## SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.Tech - IT
Title of the paper: Engineering Mathematics- III/Applied Mathematics

Semester: III
Sub.Code: 301/303 (2001/2002/2003/2004/2005)
Date: 04-05-2007

Max. Marks: 80
Time: 3 Hours
Session: AN

## PART - A

$(10 \times 2=20)$

## Answer ALL the Questions

1. Find the Laplace transform of $\frac{e^{a t}-e^{b t}}{t}$.
2. Find $L^{-1}\left(\frac{1}{S^{2}-6 S+10}\right)$
3. Solve using Laplace transforms $\frac{d y}{d t}-3 y=e^{2 t}$
4. Using Laplace transforms, solve $y+\int_{0}^{t} y(t) d t=e^{-t}$
5. Find the value of $m$ such that $2 x-x^{2}+m y^{2}$ may be harmonic.
6. Find the invariant points of the transformation $W=\frac{1}{z-2 i}$
7. Evaluate $\int_{c} \frac{d z}{(z-3)^{2}}$ where C is the circle $|\mathrm{z}|=1$.
8. Find the Residue of $f(z)=\frac{1+e^{z}}{z \cos z+\sin z}$ at $\mathrm{z}=0$.
9. Explain Null hypothesis and Alternative hypothesis.
10. What are the assumptions for student's' $t$ ' test?

## PART - B <br> Answer All the Questions

$(5 \times 12=60)$
11. (a) Find the Laplace transform of $t^{2} e^{-2 t} \cos t 2 t$.
(b) Using convolution theorem find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
(or)
12. (a) Find the Laplace Transform of $f(t)=\left\{\begin{array}{ccc}t & \text { for } & 0<t<1 \\ 2-t & \text { for } & 1<t<2\end{array}\right.$ such that $f(t+2)=f(t)$.
(b) Verify the initial and final value theorem for $f(t)=1+e^{-t}(\sin t+\cos t)$.
13. Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t$ given that $\mathrm{y}(0)=\mathrm{y}^{l}(0)=0$.
(or)
14. Solve, by using Laplace transform $3 \frac{d x}{d t}+\frac{d y}{d t}+2 x=1$ and $\frac{d x}{d t}+4 \frac{d y}{d t}+3 y=0$ given that $\mathrm{x}=0$ and $\mathrm{y}=0$ when $\mathrm{t}=0$.
15. (a) If $f(x)$ is a regular function, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) Given that $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$, find the analytic function $u+i v ?$
16. (a) Construct the analytic function given that $2 u+v=e^{x}$ [cosy-siny]
(b) Find the bilinear mapping which maps $-1,0,1$ of the z plane onto $-1,-\mathrm{i}, 1$ of the w-plane. Show that under this mapping the upper half of the z-plane maps on to the interior of the unit circle $|w|=1$.
17. (a) Using Cauchy's integral formula, evaluate $\int_{c} \frac{z+4}{z^{2}+2 z+5} d z$ where C is the circle $|z+1-i|=2$.
(b) Using contour integration, prove that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$ (or)
18. (a) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$
(b) Expand $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in Laurent's series if
(i) $|\mathrm{z}|>3$
(ii) $2<|2|<3$
19. (a) The following table gives the frequency of occurrence of the digits $0,1, \ldots, 9$ in the last place in the four figure logarithm of numbers $10-99$. Examine if there is any peculiarity

| Digits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 6 | 16 | 15 | 10 | 12 | 12 | 3 | 2 | 9 | 5 |

(b) The following table gives the length of 12 samples of Egyptian cotton taken from a consignment 48, 46, 49, 46, $52,45,43,47,47,46,45,50$. Test if the mean length of the consignment comes taken as 46 .
20. The nicotine contents in two samples of tobacco are given below:

| Sample I: | 21 | 24 | 25 | 27 | 26 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sample II: | 22 | 27 | 28 | 31 | 30 |

Can you say that the two samples came from the same population?

