SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E /B.Tech- Common to ALL Branches Title of the paper: Engineering Mathematics – I/ Engineering Mathematics - III Semester: III Max. Marks: 80 Sub.Code: 20301 (2004/2005)/6C0049/ 6C0032/301Time: 3 Hours Date: 21-04-2008 Session: AN

$$PART - A$$
 (10 x 2 = 20)
Answer All the Questions

1. Prove that $L[\cosh at] = \frac{s}{s^2 - a^2}$, s > |a|

- 2. State initial value theorem.
- 3. If y satisfies the equation $y'' + 3y' 2y = e^{-1}$ and y(0) = 0 and y'(0) = 0. find L[y]

4. Solve
$$y(t) = a \sin t = 2 \int_{0}^{t} y(u) \cos((t - u)) du$$
.

- 5. Determine whether function $2xy + i(x^2 y^2)$ is analytic or not.
- 6. What do you mean by conformal mapping?
- 7. State Cauchy's integral theorem.
- 8. Find the Residue of $\frac{e^z}{z-2}atz = 2$.
- 9. What is meant by type I and type II errors?
- 10. Give the statistic for testing the significance of mean in small samples.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

11. Find $L[te^{-1} \cosh t]$

(or)

12. Find using $L^{-1}\left[\frac{1}{\left(s^2+4\right)^2}\right]$ convolution theorem.

13. Solve:
$$y + \int_{0}^{t} y dt = t^{2} + 2t$$
.

14. Solve:
$$y'' - 3y' + 2y = e^t$$
.

15. Find an analytic function whose imaginary part is $3x^2 y - y^3$. (or)

(or)

- 16. Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ in to the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$.
- 17. Evaluate using Cauchy integral formula $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)} dz$ where C is the circle |z| = 3.

18. Find the radius pf $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at each of the poles.

19. A random sample of size 16 values from a normal population showed a mean of 53 and a sum of squares of deviation from the mean equals to 150. Can this sample be regarded as taken from the population having 56 as mean. Obtain 95% confidence limits of the mean of the population.

(or)

20. Given the following contingency table for hair colour and eye colour. Find the value of ψ^2 . Is there good association between the two?

	Hair colour				
		Fair	Brown	Black	Total
Eye Colour	Blue	15	5	20	40
	Grey	20	10	20	50
	Brown	25	15	20	60
	Total	60	30	60	150