SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E /B.Tech- Common to ALL Branches Title of the paper: Engineering Mathematics - I/Engineering Mathematics - III
Semester: III
Max. Marks: 80
Sub.Code: 20301 (2004/2005)/6C0049/6C0032/301Time: 3 Hours
Date: 21-04-2008
PART - A
$(10 \times 2=20)$
Answer All the Questions

1. Prove that $L[\cosh a t]=\frac{s}{s^{2}-a^{2}}, s>|a|$
2. State initial value theorem.
3. If y satisfies the equation $y^{\prime \prime}+3 y^{\prime} 2 y=e^{-1}$ and $y(0)=0$ and $y^{\prime}(0)=0$. find $\mathrm{L}[\mathrm{y}]$
4. Solve $\mathrm{y}(\mathrm{t})=\mathrm{a} \sin \mathrm{t}=2 \int_{0}^{t} y(u) \cos (t-u) d u$.
5. Determine whether function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic or not.
6. What do you mean by conformal mapping?
7. State Cauchy's integral theorem.
8. Find the Residue of $\frac{e^{z}}{z-2} a t z=2$.
9. What is meant by type I and type II errors?
10. Give the statistic for testing the significance of mean in small samples.

> PART - B
$(5 \times 12=60)$
Answer All the Questions
11. Find $\mathrm{L}\left[\mathrm{te}^{-1} \cosh \mathrm{t}\right]$
12. Find using $L^{-1}\left[\frac{1}{\left(s^{2}+4\right)^{2}}\right]$ convolution theorem.
13. Solve: $y+\int_{0}^{t} y d t=t^{2}+2 t$.
14. Solve: $y^{\prime \prime}-3 y^{\prime}+2 y=e^{t}$.
(or)
15. Find an analytic function whose imaginary part is $3 x^{2} y-y^{3}$.
(or)
16. Find the bilinear transformation that maps the points $\mathrm{z}_{1}=-\mathrm{i}, \mathrm{z}_{2}=0, \mathrm{z}_{3}=\mathrm{i}$ in to the points $\mathrm{w}_{1}=-1, \mathrm{w}_{2}=\mathrm{i}, \mathrm{w}_{3}=1$.
17. Evaluate using Cauchy integral formula $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z$ where C is the circle $|\mathrm{z}|=3$.
(or)
18. Find the radius $\mathrm{pf} f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ at each of the poles.
19. A random sample of size 16 values from a normal population showed a mean of 53 and a sum of squares of deviation from the mean equals to 150 . Can this sample be regarded as taken from the population having 56 as mean. Obtain 95% confidence limits of the mean of the population.

> (or)
20. Given the following contingency table for hair colour and eye colour. Find the value of ψ^{2}.Is there good association between the two?

	Hair colour					
		Fair	Brown	Black	Total	
Eye	Blue	15	5	20	40	
	Grey	20	10	20	50	
	Brown	25	15	20	60	
	Total	60	30	60	150	

