SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY DEEMED UNIVERSITY

Course: B.E./B.Tech.Semester: IIITitle of the paper: Engineering Mathematics III
Applied MathematicsMax. Marks: 80Sub. Code: 301/23303/ 24301 (2002/2003/2004)Time: 3 Hours

PART – A $(10 \times 2 = 20)$ Answer ALL the Questions

- 1. State the sufficient conditions for the existence of the Laplace Transform.
- 2. Find $L \begin{pmatrix} \frac{3}{2} \\ t \end{pmatrix}$.
- 3. Write L[x'''(t)].
- 4. Solve the integral equation $\frac{dy}{dt} + 2y + \int_{0}^{1} y \, dt = 0, y(0) = 1.$
- 5. Define analytic function.
- 6. Find the bilinear transformation that Maps the points $z_1 = \infty$, $z_2 = i$ and $z_3 = 0$ into the points $\omega_1 = 0$, $\omega_2 = i$ and $\omega_3 = \infty$.
- 7. Define singularity of the function.
- 8. Expand sinz in a Taylor series about z = 0.
- 9. Define level of significance.
- 10. Give the Main use of chi-square test.

PART – B Answer ALL the Questions

 $(5 \times 12 = 60)$

11. (a) Find L[t² e^t sint]
(b) Find L⁻¹
$$\frac{s}{(s^{2} + a^{2})^{2}}$$
.

(or)

12. (a) Find the laplace transform of the periodic function

$$f(t) = \begin{cases} t & , & 0 < t < b \\ 2b - t & , & b < t < 2b \end{cases}$$
(b) Find L⁻¹ $\left[s \log \left(\frac{s - 1}{s + 1} \right) + 2 \right]$.

13. (a) Using Laplace transformation $y'' - 3y' + 2y = e^{2t}$, y(0) = -3 and y'(0) = 5

(b) Solve the integral equation $F(t) = 5t + \int_{0}^{t} F(u) \sin(t - u) du.$

14. Solve:
$$\frac{dx}{dt} + \frac{dy}{dt} = t$$
, $\frac{dx^2}{dt^2} - y = e^{-t}$ given that $x = 0$, $y = 0$
 $\frac{dx}{dt} = 0$ When $t = 0$

15. (a) Derive the C - R equations in polar form.

(b) Find the image of |z - 2i| = 2 under the transformation $\omega = \frac{1}{z}$ (or)

- 16. (a) Show that the function u = ½ log (x² + y²) is harmonic and determine its conjugate. Also find f(z).
 (b) Find the bilinear transformation which Maps the points z₁ = -1, z₂ = 0, z₃ = 1 into the points ω₁ = 0, ω₂ = i and ω₃ = 3i respectively.
- 17. (a) State and prove Cauchy's integral formula.

(b) Evaluate
$$\int_{c} \frac{z^2 - 2z}{(z+1)^2 (z^2 + 4)} dz$$
 where c is the circle $|z| = 3$,

using residue theorem.

(or)

- 18. (a) Expand $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in a laurent's series
 - if (i) |z| > 3 (ii) 2 < |z| < 3.

(b) Using contour integration, Evaluate
$$\int_{0}^{1} \frac{dx}{(x^{2}+1)^{2}}$$

19. (a) The Mean Weekly sales of soap bars in departmental stores was 146.3 bars per store. After an advertising campaign the mean weekly sales in 22 stores for a typical weak increased to 153.7 and showed a S.D of 17.2. was the advertising campaign successful.

(b) Given the following contingency table for hair colour and eye colours. Find the value of ψ^2 . In their good association between two.

	Hair colour									
		Fair	Brown	Black	Total					
Eye colour	Blue	15	5	20	40					
colour	Grey	20	10	20	50					
	Brown	25	15	20	60					
	Total	60	30	60	150					

(or)

20. (a) A group of 10 rats on diet X and another group of 8 rats fed on a different diet Y, recorded the following increase in weight in grams.

Diet X	5	6	8	1	12	4	3	9	6	10
Diet Y	2	3	6	8	1	10	2	8		

Find whether Variances differ significantly?

(b) In a sample of 400 parts Manufactured by a factory, the number of defective parts was found to be 30. The company, however claimed that only 5% of their product is defective. Is the claim tenable?