SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY DEEMED UNIVERSITY

Course: B.E./B.Tech.
Title of the paper: Engineering Mathematics III Applied Mathematics
Sub. Code: 301/23303/ 24301 (2002/2003/2004)

Semester: III
Max. Marks: 80
Time: 3 Hours
PART - A
$(10 \times 2=20)$

Answer ALL the Questions

1. State the sufficient conditions for the existence of the Laplace Transform.
2. Find $L\binom{\frac{3}{2}}{t}$.
3. Write $L\left[x^{\prime \prime \prime}(t)\right]$.
4. Solve the integral equation $\frac{d y}{d t}+2 y+\int_{0}^{t} y d t=0, y(0)=1$.
5. Define analytic function.
6. Find the bilinear transformation that Maps the points $\mathrm{z}_{1}=\infty, \mathrm{z}_{2}=\mathrm{i}$ and $\mathrm{z}_{3}=0$ into the points $\omega_{1}=0, \omega_{2}=\mathrm{i}$ and $\omega_{3}=\infty$.
7. Define singularity of the function.
8. Expand sinz in a Taylor series about $\mathrm{z}=0$.
9. Define level of significance.
10. Give the Main use of chi-square test.

Answer ALL the Questions

11. (a) Find $L\left[t^{2} e^{t} \sin t\right]$
(b) Find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
(or)
12. (a) Find the laplace transform of the periodic function

$$
f(t)=\left\{\begin{array}{cll}
t & , & 0<t<b \\
2 b-t & , & b<t<2 b
\end{array}\right.
$$

(b) Find $L^{-1}\left[s \log \left(\frac{s-1}{s+1}\right)+2\right]$.
13. (a) Using Laplace transformation

$$
\mathrm{y}^{\prime \prime}-3 \mathrm{y}^{\prime}+2 \mathrm{y}=\mathrm{e}^{2 \mathrm{t}}, \mathrm{y}(0)=-3 \text { and } \mathrm{y}^{\prime}(0)=5
$$

(b) Solve the integral equation $F(t)=5 t+\int_{0}^{t} F(u) \sin (t-u) d u$. (or)
14. Solve: $\frac{d x}{d t}+\frac{d y}{d t}=t, \frac{d^{2}}{d t^{2}}-y=e^{-t}$ given that $x=0, y=0$

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=0 \text { When } \mathrm{t}=0
$$

15. (a) Derive the $\mathrm{C}-\mathrm{R}$ equations in polar form.
(b) Find the image of $|z-2 i|=2$ under the transformation $\omega=\frac{1}{z}$ (or)
16. (a) Show that the function $u=1 / 2 \log \left(x^{2}+y^{2}\right)$ is harmonic and determine its conjugate. Also find $f(z)$.
(b) Find the bilinear transformation which Maps the points $\mathrm{z}_{1}=-1, \mathrm{z}_{2}=0, \mathrm{z}_{3}=1$ into the points $\omega_{1}=0, \omega_{2}=\mathrm{i}$ and $\omega_{3}=3 \mathrm{i}$ respectively.
17. (a) State and prove Cauchy's integral formula.
(b) Evaluate $\int_{c} \frac{\mathrm{z}^{2}-2 \mathrm{z}}{(\mathrm{z}+1)^{2}\left(\mathrm{z}^{2}+4\right)} \mathrm{dz}$ where c is the circle $|\mathrm{z}|=3$,
using residue theorem.
(or)
18. (a) Expand $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in a laurent's series
if (i) $|z|>3$
(ii) $2<|\mathrm{z}|<3$.
(b) Using contour integration, Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
19. (a) The Mean Weekly sales of soap bars in departmental stores was 146.3 bars per store. After an advertising campaign the mean weekly sales in 22 stores for a typical weak increased to 153.7 and showed a S.D of 17.2. was the advertising campaign successful.
(b) Given the following contingency table for hair colour and eye colours. Find the value of ψ^{2}. In their good association between two.

	Hair colour				
Eye colour	Blue	Fair	Brown	Black	Total
	Grey	15	5	20	40
	Brown	20	10	20	50
	Total	60	15	20	60

(or)
20. (a) A group of 10 rats on diet X and another group of 8 rats fed on a different diet Y , recorded the following increase in weight in grams.

Diet X	5	6	8	1	12	4	3	9	6	10
Diet Y	2	3	6	8	1	10	2	8		

Find whether Variances differ significantly?
(b) In a sample of 400 parts Manufactured by a factory, the number of defective parts was found to be 30 . The company, however claimed that only 5% of their product is defective. Is the claim tenable?

