SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E - EEE
Title of the paper: Engineering Mathematics - III

Semester: III
Sub.Code: 514301
Date: 26-11-2007

Max. Marks: 80
Time: 3 Hours Session: AN

PART - A

$(10 \times 2=20)$

Answer All the Questions

1. Find L[coshat sinat].
2. Find $L^{-1}\left(\frac{1}{s^{2}+2 s+2}\right)$.
3. State Dirichlet's conditions.
4. What is the sine series of $f(x)=K$ in $0<x<\pi$.
5. Obtain partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=1$.
6. Write the particular integral in the solution of $\left(D^{2}+3 D D^{\prime}+4 D^{\prime 2}\right)=e^{x-y}$.
7. In the heat equation $\mathrm{U}_{\mathrm{t}}=\alpha^{2} \mathrm{U}_{x x}$, what does α^{2} stand for?
8. Write the partial differential equation of two dimensional heat flow in steady state conditions.
9. State parseval's relation for Fourier transforms.
10. Show that $\mathrm{F}_{\mathrm{s}}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\}=-\mathrm{sF}_{\mathrm{c}}(\mathrm{s})$.

PART - B

$(5 \times 12=60)$
Answer All the Questions
11. (a) Find the Laplace Transform of the following periodic function $f(t)=\left\{\begin{array}{ll}\sin \text { at } & \text { for } \quad 0<t<\frac{\pi}{a} \\ 0 & \text { for } \\ \frac{\pi}{a}<t<\frac{2 \pi}{a}\end{array}\right.$ andf $\left(t+\frac{2 \pi}{a}\right)$
(b) Find the Laplace transform of $\mathrm{te}^{2 \mathrm{t}} \sin 3 \mathrm{t}$.
(or)
12. (a) Find the inverse Laplace transform of the following function using convolution theorem $\frac{1}{s^{3}(s+5)}$
(b) Solving using Laplace transform: $\left(D^{2}+4 D+4\right) y=\sin t$, given that $\mathrm{y}(0)=2$ and $\mathrm{y}^{\prime}(0)=0$.
13. (a) determine the Fourier series for the function $f(x)=x^{2}$ is of period 2π in $0<x<2 \pi$.
(b) Find the complex form of Fourier series for the function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}$ in $-1<\mathrm{x}<1$.
(or)
14. (a) Find the half range cosine series for the function $f(x)=x(\pi-x)$ in $0<x<\pi$.
(b) Find the constant term and the first harmonic of the fourier series for $\mathrm{f}(\mathrm{x})$ from the following data:

$\mathrm{x}:$	0	60°	120°	180°	240°	300°	360°
$\mathrm{F}(\mathrm{x}):$	15.5	19.5	24.5	22.5	20.5	17.5	15.5

15. (a) Find the singular integral of the partial differential equation $z=p x+q y+p^{2}-q^{2}$.
(b) Solve $\left(D^{2}+4 D D^{!}-5 D^{!2}\right) z=\sin (x-2 y)$.
(or)
16. (a) Find the general solution of $(3 z-4 y) p+(4 x-2 z) q=2 y-$ $3 x$.
(b) Form the partial differential equation by eliminating f and g form $z=y f(x)+x g(y)$.
17. If a string of length l is initially at rest in equilibrium position with fixed end point's and if each of its point's is given the velocity $\lambda x(l-x)$, determine the displacement function $y(x, t)$. (or)
18. A rectangular plate with insulated surface is $l \mathrm{~cm}$ wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error. If the temperature of the short edge $\mathrm{y}=0$ is given by $u=\left\{\begin{array}{cl}k x & \text { for } 0<x<\frac{l}{2} \\ k(l-x) & \text { for } \frac{l}{2}<x<l\end{array}\right.$ and the remaining three edges are kept at $0^{\circ} \mathrm{C}$ find the steady state temperature in the plate.
19. Find the fourier transform of $f(x)$ given by $F(x)=\left\{\begin{array}{ll}1 & \text { for }|x|<2 \\ 0 & \text { for }|x|>2\end{array}\right.$ and hence evaluate $\int_{0}^{\infty}\left(\frac{\sin x}{x}\right) d x$ and $\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$. (or)
20. (a) Find the Fourier cosine transform $\frac{1}{1+x^{2}}$.
(b) State and prove the convolution theorem for Fourier transforms.
