SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Except to Bio Groups \& 2005 EEE Batch)
Title of the paper: Engineering Mathematics - III
Semester: III
Max. Marks: 80
Sub.Code: 301(2003/2004/2005) 6C0032 (2006/2007) Time: 3 Hours
Date: 03-11-2008
Session: FN
PART - A
$(10 \times 2=20)$
Answer All the Questions

1. Prove that $L\left[e^{-a t}\right]=\frac{1}{s+a}$ Provided $\mathrm{s}+\mathrm{a}>0$.
2. State Convolution theorem.
3. Solve $\frac{d y}{d x}-y=e^{t}, y(0)=1$.
4. Solve $y+\int_{0}^{t} y d t=t^{2}+2 t$.
5. Examine the analyticity of the function $f(z)=z^{2}$.
6. Show that the function $u=2 x y+3 y$ is harmonic and find its conjugate.
7. State the Cauchy's Integral theorem.
8. Expand $\mathrm{f}(\mathrm{z})=\sin \mathrm{z}$ in a Taylor series about $z=\frac{\pi}{4}$.
9. What is difference between population and sample?
10. Write down the probability density function of $\chi^{2}-$ distribution.

Answer All the Questions

11. Find $L^{-1}\left[\frac{s}{(s+1)^{2}\left(s^{2}+1\right)}\right]$.
(or)
12. Verify the initial and final value theorem for the function $f(t)=1+e^{-t}(\sin t+\cos t)$.
13. Solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=0$, wherey $=2, \frac{d y}{d t}=-4 a t \quad t=0$.
(or)
14. Find y which satisfies the equation $\frac{d y}{d t}+4 y+5 \int_{0}^{t} y d t=e^{-t}$ when $y(0)=0$.
15. Determine the analytic function whose real part is $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$.

> (or)
16. Find the bilinear transformation which maps the point $-2,0,2$ into the points $w=0, i,-i$ respectively.
17. Using Cauchy's integral formula, find the value of $\int_{C} \frac{z+4}{z^{2}+2 z+5} d z$. Where C the circle $|\mathrm{z}+1-\mathrm{i}|=2$.
(or)
18. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-4 \sin \theta}$.
19. A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. IS the sample not up to the standard?
(or)
20. The number of automobile accidents per week in a certain community are as follows: $12,8,20,2,14,10,15,6,9,4$. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period?

