B. Tech Degree V Semester Examination, November 2009

CS 504 AUTOMATA LANGUAGES AND COMPUTATION

(1999 Scheme)

(1999 Scheme)			
Time: 3 Hours		Maximu	m Marks: 100
I.	(a) (b)	Prove the equivalence of NFA and DFA. Illustrate the concept of DFA with an example. OR	(12) (8)
II.	(a) (b)	Prove the equivalence of NFA with and without E-moves. Illustrate the concept of E-closure with an example.	(14) (6)
III.	(a) (b)	State and prove the pumping lemma for regular sets. Discuss the applications of Finite Automata.	(10) (10)
IV.	(a) (b)	OR State and prove Myhill-Nerode Theorem. Explain the following terms: -	(12)
		(i) Moore machines (ii) Mealy machines	(4) (4)
V.	(a)	Explain the following terms: - (i) Chomsky Normal Form (ii) Unit Productions	$(2 \times 5 = 10)$
	(b)	Design a deterministic PDA corresponding to $L = \{\omega C\omega^R \mid \omega \text{ is in } (0+1)^*\}$	
		by empty stack. OR	(10)
VI.		Explain the following terms: - (i) Push down automata (ii) E-productions (iii) Greibach Normal Form (iv) Derivation tree	(4 x 5 = 20)
VII.	(a) (b)	Explain the basic Turing Machine Model with a neat diagram. Write short notes on: (i) Multiple tracks (ii) Shifting over OR	(10) $(2 \times 5 = 10)$
VIII.	(a)	Design a Turing Machine to accept the language $L = \{o^n \mid 1^n / n \ge 1\}$	(10)
	(b)	Explain the following terms: - (i) Non deterministic Turing Machine (ii) Storage in Finite Control.	$(2 \times 5 = 10)$
IX.	(a) (b)	Distinguish between recursive and recursively enumerable languages. Explain the following terms: - (i) Regular grammar	(10)
		(ii) Linear bound automata.	(10)
X.	(a) (b)	Show that if L has a regular grammar, then L is a regular set.	(12) (8)
		*** Explain the four classes of languages (Chomsky Hierarchy) ***	582 O