

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 CONTROL SYSTEM

SEMESTER - 5

Time: 3 Hours]		[Full Marks : 70
time . 2 monts ;	*	[rum marks . / v

Semi-log and graph sheets are printed at the end of this booklet.

GROUP - A

(Multiple Choice Type Questions)

Cho	oose t	he correct alternatives for any te	n of t	the following: $10 \times 1 = 10$
ŋ		e characteristic equation of a settem is	econd	order system is $s^2 + 6s + 25 = 0$. The
	a)	underdamped	b)	overdamped
	c)	undamped	d)	critically damped.
n)	The	e type number of a transfer func	ion d	enotes the number of
	a)	poles at origin	b)	zeros at origin
	c)	poles at infinity	d)	none of these.
HI)	Pre	sence of non-linearities in a cont	rol sy	stem leads to introduce
**************************************	a)	transient error	b)	instability
	c)	steay state error	d)	all of these.
iv)	In t	erms of Bode plot, the system is	stabl	age of the second secon
	a)	PM = GM	b)	PM & GM both are positive
	c)	PM and GM both are negative	d)	PM negative but GM positive.
v)	By 1	the use of PD control to the seco	nd or	der system, the rise time
	a)	decreases	b)	increases
	c)	remains same	d)	none of these.

3	/B.TECH	(ECE)	SEM-5	/EC-518	(N)/07	/(08)

ŀ		

vi)	The	lead-lag compensation will imp	rove		
	a)	transient response			
	, b)	transient response and stead	y state	response	
	c)	none of these.			
vii)	The	response of a control system, l	naving (damping factor as unity will be	
	a)	oscillatory	b)	underdamped	
	(c)	critically damped	d)	none of these.	
viii)	A sy	stem has a single pole at origin	n. Its in	npulse response will be	
	a) .	constant	b)	ramp	
	c)	decaying exponentially	d)	oscillatory.	
ix)	The	matrix shown below is	,		
		\[4 - 4 2 \]			
٠		-4 5 -2			
		2 -2 1			
	a)	positive definite	b)	positive semi-definite	
	c)	negative definite	d)	none of these.	
x)	A is	an $n \times n$ matrix. Then the	system	to be controllable, the rank	of the
	cont	rollability matrix should be			
	a) -	n	b)	> n	•
	c)	≥ n	d)	≤ <i>n</i> .	
xi)			er syste	em resonding to a step input	with 5%
•	over	shoot is			
	a)	$4/\xi W_n$	b)	$2/\xi W_n$	
• .	c)	3/ξ W _n	d)	$5/\xi W_n$.	
xii)	Area	under a unit impulse function	is		
	a)	infinity	b)	zero	
	c)	unity	d)	none of these.	-
	•	· ·			

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

Obtain state variable model of the system whose transfer function is given by

$$\frac{Y(s)}{U(s)} = \frac{s+1}{s^3 + 3s^2 + 7s + 1}.$$

- Determine the transfer function of an armature control d.c. motor system.
- A feedback control system is decribed as

$$G(s) = \frac{50}{s(s+2)(s+5)}, H(s) = \frac{1}{s}$$

Evaluate the static error constants K_p , $K_v \& K_a$ for the system.

5. Consider the system

$$\dot{x}_1 = -x_2 + \alpha x_1^3$$

$$\dot{x}_2 = x_1 + \alpha x_2^3.$$

Discuss the stability in the sense of Lyapunov.

6. Find C/R using block diagram reduction method of the following diagram:

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Mention the difficulties that may arise in applying Routh stability criterion. What do you mean by relative stability?
 - b) The open loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{K(s+1)}{2s^3 + as^2 + 2s + 1}$$

The above system oscillates with frequency ω , if it has poles on $s = +j\omega$ and $s = -j\omega$ and no poles in the right half s-plane. Determine the values of K and α , so that the system oscillates at a frequency of 2 radian/sec.

c) The open loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{K}{s(s^2 + 6s + 25)}$$

Find:

- i) the number, angle and centroid of the asymptotes
- ii) angle of departure
- iii) the break-away point
- iv) the condition for marginal stabilty.

. 6

- 8. a) What do you mean by principle of argument? State and explain Nyquist criterion of a control system. 1+2
 - b) A unity feedback control system has open loop transfer function,

$$G(s)H(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$$

Determine closed loop stability by Nyquist plot.

7

S/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(08)

Determine the transfer function of the system whose Bode plot is shown c) 5 below:

Explain sampling and hold.

3

Find the pulse transfer function for the error sampled system shown in the **b**) following figure.

Find the inverse and transform of the following system: c)

$$F(z) = \frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}.$$

- 10. a) State the difference between describing function and transfer function.
- 5

b) A single input single output system is given by

$$\dot{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u(t)$$

and $y(t) = [1 \ 0 \ 2]x(t)$.

Test for controllability and observability.

- 5
- c) Obtain the eigenvalues and eigenvectors for a system described by

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X.$$
 5

11. Write short notes on any three of the following:

 3×5

- a) PID controller
- b) Compensation techniques
- c) Phase plane technique of non-linear system analysis
- d) Dead zone and saturation type of non-linearity
- e) Polar plot.

END