No. of Questions : 120
1 If $\int_{\pi / 2}^{\theta} \sin x d x=\sin 2 \theta$, then the value of θ satisfying $0<\theta<\pi$ is

1. $3 \pi / 2$
2. $\pi / 2$
3. $5 \pi / 6$
4. $\pi / 2$

2 Which one of the following operations cannot be overloaded?

1. Subscripting operator
2. Function call operator
3. Membership operator
4. Assignment operator

3 A survey shows that 63% of Indians like banana whereas 76% like apples. If $x \%$ of Indians like both banana and apples, then

1. $x=39$
2. $x=63$
3. $39 \leq x \leq 63$
4. None of these

4 If $f(x)=a x+b$ and $g(x)=c x+d$, then $f(g(x))=g(f(x))$ is equivalent to

1. $f(a)=g(c)$
2. $f(b)=g(b)$
3. $f(d)=g(b)$
4. $f(\mathrm{c})=\mathrm{g}(\mathrm{a})$

5 Total number of commutative binary operation on a finite set containing n elements is

1. $n^{n \frac{n+1}{2}}$
2. $n^{n \frac{n-1}{2}}$
3. $n^{n^{2}}$
4. $2^{n^{2}}$

6 Which of the following is correct?

1. $1+\mathrm{i}>2-\mathrm{i}$
2. $2+\mathrm{i}>1+\mathrm{i}$
3. $2-i>1+i$
4. None of these

The encoding scheme that uses only both polarities to represent binary 1 and 0 is 7

1. bi-phase
2. bipolar
3. polar
4. unipolar

8 Which of the following insertions in the AVL tree below will result in a non-AVL tree?

1. 15
2. 37
3. 70
4. None

9 If the complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other, then x is equal to

1. $\mathrm{n} \pi$
2. $(\mathrm{n}+1 / 2) \pi$
3. 0
4. None of these

10 If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ be two AMs and $\mathrm{G}_{1}, \mathrm{G}_{2}$ be two GMs between a and b , then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to

1. $\frac{a+b}{2 a b}$
2. $\frac{2 a b}{a+b}$
3. $\frac{a+b}{a b}$
4. $\frac{a+b}{\sqrt{a b}}$

11 Which of the following process models will be used to develop a software product for which critical requirements are poorly understood?

1. Waterfall
2. Throw-away Prototyping
3. Evolutionary Prototyping
4. Incremental

12 The coefficient of x^{99} in the expansion of $(x-1)(x-2) \ldots(x-100)$ is equal to

1. 5050
2. 5000
3. -5050
4. -5000

The determinant $\Delta=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|$ is equal to zero, if

1. a, b, c are in $A P$
2. a, b, c are in GP
3. a, b, c are in HP
4. no relation between a, b, c

14 If sets A and B are defined as
$A=\left\{(x, y): y=e^{x}, x \in R\right\}$
$B=\{(x, y): y=x, x \in R\}$
then

1. $B \subset A$
2. $A \subset B$
3. $A \cap B=\phi$
4. $A \cup B=A$

15 In LRU page replacement algorithm, the pages to be replaced are taken from

1. the past knowledge
2. the future knowledge
3. the present knowledge
4. depends on the page size of the processes

16 The number of solutions of the equation $5^{x}+5^{-x}=\log _{10} 25$, $(x$

1. 0
2. 1
3. 2
4. infinitely many

17 If n is even and ${ }^{n} C_{0}<{ }^{n} C_{1}<{ }^{n} C_{2}<\ldots<{ }^{n} C_{r}>{ }^{n} C_{r+1}>{ }^{n} C_{r+2}>\ldots>{ }^{n} C_{n}$, then r is equal to

1. $\frac{n}{2}$
2. $\frac{n-1}{2}$
3. $\frac{n-2}{2}$
4. $\frac{n+2}{2}$

18 A system multiplexes 10 channels of capacity 128 kbps each into a channel of 1024 kbps capacity using synchronous Time Division Multiplexing. The number of channels, system will be able to multiplex if it uses asynchronous time division multiplexing is

1. 18
2. 10
3. 15
4. 22

19 The number of times the digit 3 will be written when listing the integers from 1 to 1 is

1. 269
2. 300
3. 271
4. 302

20 On your way to work, you have to drive through a busy junction where you may be stopped at traffic lights. The cycle of the traffic light is 2 minutes of green followed by 3 minutes of red. What is the expected delay in the journey, if you arrive at the junction at random time uniformly distributed over the whole 5 minute cycle is??

1. $9 / 10$ minute
2. $3 / 5$ minute
3. $1 / 5$ minute
4. $3 / 2$ minutes

21 The coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}$ is

1. ${ }^{51} \mathrm{C}_{5}$
2. ${ }^{9} \mathrm{C}_{5}$
3. ${ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}$
4. ${ }^{30} \mathrm{C}_{5}+{ }^{20} \mathrm{C}_{5}$

22 What is the checksum code for a block of 5 messages defined by codes $48 \mathrm{H}, 65 \mathrm{H}, 6 \mathrm{CH}, 70 \mathrm{H}$, and 21 H ?

1. 276 H
2. 1 AOH
3. AAH
4. A 1 H

23 The sum of the series
$1+\frac{1^{2}+2^{2}}{2!}+\frac{1^{2}+2^{2}+3^{2}}{3!}+\frac{1^{2}+2^{2}+3^{2}+4^{2}}{4!}+\ldots \ldots$ is

1. 3 e
2. $\frac{17}{6} e$
3. $\frac{13}{6} e$
4. $\frac{19}{6} e$

24 Let X have the Poisson distribution with parameter λ, such that $P(X=k+1)=r(k) P(X=k)$. Then $r(k)$ is

1. $\frac{\lambda}{k+1}$
2. $\frac{\lambda}{k}$
3. $k \lambda$
4. $\frac{k \lambda}{k+1}$

25 Consider a relation $R(P, Q, R, S)$ with the set of functional dependences $F=\{P Q \rightarrow R, R \rightarrow S, S \rightarrow P\}$. Which of the following is a key of R ?

1. $P Q$
2. $Q R$
3. $Q S$
4. All of the above

26 The number of ways in which n distinct objects can be put into two different boxes so that no box remains empty is

1. $2^{n}-1$
2. $n^{2}-1$
3. $2^{n}-2$
4. $\mathrm{n}^{2}-2$
$27 \sum_{n=0}^{\infty} \frac{\left(\log _{e} x\right)^{n}}{n!}$ is equal to
5. $\log _{\mathrm{e}} \mathrm{x}$
6. X
7. $\log _{x} e$
8. None of these

28 What will be the output of the following C Program?
main()
\{int i, n = 5;

$$
\text { for }(i=1 ; i<=n ; i
$$

1. 1361015
2. 36101521
3. 137915
4. None

29 The resultant of three equal like parallel forces acting at the vertices of a triangle acts at its

1. incentre
2. cirucmcentre
3. circumcentre
4. centroid

30
If $\mathrm{I}_{1}=\leftarrow \int_{e}^{2} \frac{d x}{\log x}$ and $\mathrm{I}_{2}=\int_{1}^{2} \frac{e^{x} d x}{x}$, then

1. $\mathrm{I}_{1}=\mathrm{I}_{2}$
2. $2 I_{1}=I_{2}$
3. $I_{1}=2 I_{2}$
4. None of these

The coefficient of x^{n} in the expansion of $\log _{a}(1+x)$ is

1. $\frac{(-1)^{n-1}}{n}$
2. $\frac{(-1)^{n-1}}{n} \log _{a} e$
3. $\frac{(-1)^{n-1}}{n} \log _{e} a$
4. $\frac{(-1)^{n}}{n} \log _{a} e$

32 What is s system call?

1. Interface between process and hardware
2. Interface between OS and hardware
3. Interface between process and OS
4. None of these

33 The inverse of a diagonal matrix is

1. a symmetric matrix
2. a skew-symmetric matrix
3. a diagonal matrix
4. None of these

34 The vector interrupt address of "TRAP" in 8085 microprocessor is

1. 0034 H
2. 003 CH
3. 002 CH
4. 0024 H

35 The rank of a null matrix

1. is 0
2. is 1
3. does not exist
4. None of these

36 If every pair from among the equations $x^{2}+p x+q r=0, x^{2}+q x+r p=0$ and $x^{2}+r x+p q=0$ has a common root, then the sum of the three common roots is

1. $2(\mathrm{p}+\mathrm{q}+\mathrm{r})$
2. $p+q+r$
3. $-(p+q+r)$
4. pqr

37 If $\left|\begin{array}{ccc}p & q-y & r-z \\ p-x & q & r-z \\ p-x & q-y & r\end{array}\right|=0$, then the value of $\frac{p}{x}+\frac{q}{y}+\frac{r}{z}$ is

1. 0
2. 1
3. 2
4. 4 pqr

38 In a complete binary search tree with 7 nodes, maximum number of searches required to search an element is

1. 7
2. 4
3. 3
4. None

39 If A and B are two fixed points, then the locus of a point which moves in such a way that the angle APB is a right angle is

1. a circle
2. an ellipse
3. a parabola
4. None of these

40 There are two bags each containing n balls. A boy has to select an equal number of balls from both the bags. The number of ways in which boy can choose at least one ball from each bag is

1. ${ }^{2 n} C_{n}$
2. $\left({ }^{\mathrm{C}} \mathrm{C}_{\mathrm{n}}\right)^{2}$
3. ${ }^{2 n} \mathrm{C}_{1}$
4. ${ }^{2 n} \mathrm{C}_{\mathrm{n}}-1$

41 Unsafe state is a deadlock state.

1. True
2. False
3. May be
4. Cannot be determined

42 The mid-points of the sides of a triangle are $(5,0),(5,12)$ and $(0,12)$. The orthocenter of this triangle is

1. $(0,0)$
2. $(10,0)$
3. $(0,24)$
4. $(13 / 3,8)$

43 Thrashing results in

1. high computing activity
2. high I/O activity
3. low I/O activity
4. None

44 If a line is drawn through a fixed point $\mathrm{P}(\alpha, \beta)$ to cut the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ at A and B , then $\mathrm{PA} \times \mathrm{PB}$ is equal O

1. $\alpha^{2}+\beta^{2}$
2. $\alpha^{2}+\beta^{2}-a^{2}$
3. α^{2}
4. $\alpha^{2}+\beta^{2}+a^{2}$

45 Points $A(1,3)$ and $C(5,1)$ are opposite vertices of a rectangle $A B C D$. If the slope of $B D$ is 2 , then its equation is

1. $2 x-y=4$
2. $2 x+y=4$
3. $2 x+y-7=0$
4. $2 x+y+7=0$

46 If the lines $a x+2 y+1=0, b x+3 y+1=0, c x+4 y+1=0$ are concurrent, then a, b, c are in

1. HP
2. GP
3. HP
4. None of these

47 The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is

1. $7 / 2$
2. 4
3. $7 / 10$
4. None of these

48 If p and q are pointer variables, which of the following operations is valid?

1. $p+q$
2. $\mathrm{p}-\mathrm{q}$
3. Both (A) and (B)
4. None

49 Area of the quadrilateral formed by the lines $|x|+|y|=1$ is

1. 4
2. 2
3. 8
4. None of these

50 The gray code of $(01101010)_{2}$ is

1. 01110111
2. 01011111
3. 10020
4. 10120

51 Let $y=x^{2} e^{-x}$, then the interval in which y increases with respect to x is

1. $(-¥, ¥)$
2. $(-2,0)$
3. $(2, ¥)$
4. $(0,2)$

52 The parametric coordinates of any point on the parabola $y^{2}=4 a x$ can be

1. $\left(-a t^{2},-2 a t\right)$
2. $\left(a t^{2}, 2 a t\right)$
3. $\left(-a \sin ^{2} t,-2 a \sin t\right)$
4. $(-a \sin t,-2 a \cos t)$

53 Let A be a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to

1. $\mathrm{k} \operatorname{adj} \mathrm{A}$
2. $k^{n} \operatorname{adj} A$
3. $k^{n-1} \operatorname{adj} A$
4. $k^{n+1} \operatorname{adj} A$

54 The locus of the point of intersection of tangents to an ellipse at two points, sum of whose eccentric angles is constant, is a/an

1. parabola
2. circle
3. ellipse
4. straight line

55 Most efficient way of implementing priority queue is by

1. circular array
2. heap
3. B^{+}tree
4. linked list
$56 \lim$
$\lim _{x \rightarrow \infty}(1+2 / x)^{x}$ equals
5. e
6. ∞
7. e^{2}
8. $1 / \mathrm{e}$

57 If a and $b(\neq 0)$ are the roots of the quadratic equation $x^{2}+a x+b=0$, then the least value of $x^{2}+a x+b(x \in R)$ is

1. $9 / 4$
2. $-9 / 4$
3. $-1 / 4$
4. $1 / 4$

58 If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ if $f(x)$ is differentiable at $\mathrm{x}=0$, then

1. $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$
2. $a=0, b=0 ; c \in R$
3. $b=c=0 ; a \in R$
4. $c=0, a=0 ; b \in R$

59 Let $f(x)$ is a function differentiable at $\mathrm{x}=\mathrm{c}$, the $\lim _{x \rightarrow c} f(x)$ equals

1. $f^{\prime}(\mathrm{c})$
2. $\mathrm{f}^{\prime \prime}(\mathrm{c})$
3. $1 / \mathrm{f}(\mathrm{c})$
4. None of these

60 If $x^{y}=e^{x-y}$, then $d y / d x$ is equal to

1. $(1+\log x)^{-1}$
2. $(1+\log x)^{-2}$
3. $\log x \cdot(1+\log x)^{-1}$
4. None of these
5. Pure virtual functions force the programmer to redefine the function inside the derived classes
6. We cannot have a virtual constructor, but we can have virtual destructor
7. a virtual function cannot be a friend of another class
8. Virtual functions cannot be static members

62 If $\mathrm{y}^{2}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants, then $y^{3} \frac{d^{3} y}{d x^{3}}$ is equal to

1. a constant
2. a function of x
3. a function of y
4. a function of both x and y

63 If $\mathrm{y}=\int_{0}^{x} f(t) \sin \{k(x-t)\} d t$, then $\frac{d^{2} y}{d x^{2}}+k^{2} y$ equals

1. 0
2. y
3. $k f(x)$
4. $k^{2} f(x)$

64 If $\sqrt{x+y}+\sqrt{y-x}=c$, then $\frac{d^{2} y}{d x^{2}}$ equals

1. $2 / \mathrm{c}$
2. $-2 / \mathrm{c}$
3. $2 / c^{2}$
4. None

65 The propagation of operations is referred as

1. aggregation
2. association
3. triggering
4. None of the above

66 The maximum value of $(1 / x)^{x}$ is equal to

1. e
2. e^{e}
3. $e^{1 / \mathrm{e}}$
4. $(1 / e)^{1 / e}$

67 The distance between the origin and the tangent to the curve $y=e^{2} x+x^{2}$ drawn at the point $x=0$ is

1. $\frac{1}{\sqrt{5}}$
2. $\frac{2}{\sqrt{5}}$
3. $\frac{-1}{\sqrt{5}}$
4. $\frac{2}{\sqrt{3}}$

68 In C language size of ('a') returns

1. 1
2. 2
3. 4
4. 8

69 If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then P is

1. $(4,4)$
2. $(-1,2)$
3. $(9 / 4,3 / 8)$
4. None of these

70 The number of real roots of the equation $e^{x-1}+x-2=0$ is

1. 1
2. 2
3. 3
4. 4

71 If $f(x)=k x-\sin x$ is monotonically increasing, then

1. $\mathrm{k}>1$
2. $k>-1$
3. $k<1$
4. $\mathrm{k}<-1$

72 The function $f(x)=a \sin x+(1 / 3) \sin 3 x$ has maximum value of atf $x=$

1. 3
2. $1 / 3$
3. 2
4. $1 / 2$

73 For any complex number z, the minimum value of $|z|+|z-1|$ is

1. 1
2. 0
3. $1 / 2$
4. $3 / 2$

74 The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12 . If the resultant is at 90° with the force of similar magnitude, then their magnitudes are

1. 3,15
2. 4,14
3. 5,13
4. 6,12

75

Given p and $\left(p^{\wedge} \neg q\right) \rightarrow \neg p$, proves

1. $q \rightarrow p$
2. $p \rightarrow q$
3. p
4. q

76 The last three digits of a telephone number have been erased and all we know is that the number was 25785??? Assuming that all possibilities are equally likely, the probability that the missing digits are all equal to each other is

1. 0.001
2. 0.0076
3. 0.010
4. 0.270

77 The value of the integral $\int \frac{1+x^{2}}{1+x^{4}} \mathrm{dx}$ is equal to

1. $\tan ^{-1} x^{2}+c$
2. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^{2}-1}{x \sqrt{2}}\right)$
3. $\frac{1}{2 \sqrt{2}} \log \left(\frac{x^{2}+1+x \sqrt{2}}{x^{2}+1-x \sqrt{2}}\right)+c$
4. None of these

78 The value of the integral $\int_{-1}^{1} x|x| \mathrm{dx}$ is

1. 2
2. 1
3. 0
4. 3

79 The bandwidth of an FM signal carrying a message signal of 12 MHz bandwidth is

1. 24 MHz
2. 48 MHz
3. 96 MHz
4. 120 MHz

80 The area of the figure bounded by the curves $\mathrm{y}=\mathrm{e}^{\mathrm{x}}, \mathrm{y}=\mathrm{e}^{-\mathrm{x}}$ and the straight line $\mathrm{x}=1$ is

1. $e+\frac{1}{e}$
2. $e-\frac{1}{e}$
3. $e+\frac{1}{e}-2$
4. None of these

If the letters of the word 'REGULATION' be arranged at random, the probability that there will be exactly 4 letters

81 between R and E is

1. $1 / 10$
2. $1 / 9$
3. $1 / 5$
4. $1 / 2$

82 If $\cos A+\cos B=m$ and $\sin A+\sin B=n$, where $m, n \neq 0$, then $\sin (A+B)$ is equal to

1. $\frac{m n}{m^{2}+n^{2}}$
2. $\frac{2 m n}{m^{2}+n^{2}}$
3. $\frac{m^{2}+n^{2}}{2 m n}$
4. $\frac{m n}{m+n}$

83 What will be the output of the following ' C ' code?
If ("abc" = = "abc")
print("yes/n");
else
print("No/n");

1. yes
2. no
3. cannot be determined
4. None of the above

84 The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is

1. $n \pi+\frac{\pi}{8}$
2. $\frac{n \pi}{2}+\frac{\pi}{8}$
3. $(-1)^{n} \frac{n \pi}{2}+\frac{\pi}{8}$
4. $2 \mathrm{n} \pi+\cos ^{-1}(3 / 2)$

85 The normal to a given curve is parallel to x-axis if

1. $\frac{d y}{d x}=0$
2. $\frac{d y}{d x}=1$
3. $\frac{d x}{d y}=0$
4. $\frac{d x}{d y}=1$

86 If G is an Abelian group, then for all a, b

1. $a^{\prime} b$
2. a^{-1}
3. e
4. None of these

87 The additive group of integers is a cyclic group generated by

1. 1
2. 2
3. 3
4. None of these

88 The imaginary part of $\tan ^{-1}(5 i / 3)$ is

1. 0
2. ∞
3. $\log 2$
4. $\log 4$

89 Two like forces of 5 N and 15 N act on a light rod at two points A and B respectively 6 m apart. The resultant force and the distance of its point of application from the point A are respectively

1. $10 \mathrm{~N}, 4.5 \mathrm{~m}$
2. $20 \mathrm{~N}, 4.5 \mathrm{~m}$
3. $20 \mathrm{~N}, 1.5 \mathrm{~m}$
4. $10 \mathrm{~N}, 1.5 \mathrm{~m}$
$90 \times .25$ has
5. 3 layers
6. 5 layers
7. 2 layers
8. 4 layers

91 The locus of the point of intersection of tangents to the parabola $y^{2}=4(x+1)$ and $y^{2}=8(x+2)$ which are perpendicular to each other is

1. $x+7=0$
2. $x-y=4$
3. $x+3=0$
4. $y-x=12$

92 A body of weight 60 kg rests on a rough horizontal plane, whose coefficient of friction is $2 / 3$. The least force acting horizontally that would move the body is

1. 10 kg wt
2. 50 kg wt
3. 40 kg wt
4. 39 kg wt

If the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are in AP, then they lie on a/an

1. circle
2. parabola
3. line
4. ellipse

94 Which one is the contrapositive of $q \rightarrow p$?

1. $\mathrm{p} \rightarrow \mathrm{q}$
2. $\neg \mathrm{p} \rightarrow \neg \mathrm{q}$
3. $\neg q \rightarrow \neg p$
4. None of these

95 Which of the following is most appropriate about Software Debugging?

1. Process that shows presence of error
2. Process that shows the presence of error and identifying the source of error
3. Process and identifies the source of error and fixes it
4. Process that shows the presence of error and identifying the source of error and fixes it

96 If the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{A}$ given by $\mathrm{f}(\mathrm{x})=\frac{x^{2}}{x^{2}+1}$ is a surjection, then A is equal to

1. R
2. $[0.1)$
3. $(0,1]$
4. $[0,1]$

97 If a particle is projected vertically upwards and is at a height h after t_{1} seconds and again after t_{2} seconds, then its velocity of projection is

1. $\mathrm{gt}_{1} \mathrm{t}_{2}$
2. $\mathrm{gt}_{1} \mathrm{t}_{2} / 2$
3. $g\left(t_{1}+t_{2}\right) / 2$
4. $g\left(t_{1}+t_{2}\right)$

98 To avoid interference between channels, Bluetooth uses

1. DSSS
2. FHSS
3. Both DSSS and FHSS
4. CDMA
$99 \neg \forall x P(x)$ is equivalent to
5. $\exists x \neg P(x)$
6. $\forall x \neg P(x)$
7. $\neg \exists x P(x)$
8. None of these

100 For a complete graph with 7 vertices, number of spanning tree is at least

1. 64
2. 63
3. 127
4. 128

101 If pth, qth and rth terms of a GP are x, y, z respectively, then $x^{q-r} y^{r-p} z^{p-q}$ is equal to

1. 0
2. 1
3. -1
4. None of these

102 Which of these conditions hold for a planar graph?

1. $v-e+r=2$
2. $v-r+e=2$
3. $e-v+r=2$
4. None of these

103 A graph G is called unicursal if and if

1. all vertices of G are of even degree
2. all vertices are of odd degree
3. exactly two vertices are of odd degree
4. exactly two vertices are of odd degree

104 A relation that is reflexive, antisymmetric and transitive is a/an

1. function
2. equivalence relation
3. partial order
4. None of these

105 If A is a symmetric matrix and $n \in N$, then A^{n} is

1. symmetric
2. skew - symmetric
3. a diagonal matrix
4. None of these

106
The value of a so that the function $f(x)=\left\{\begin{array}{l}\frac{1-\cos a x}{x \sin x}, x \neq 0 \\ \frac{1}{2}, x=0\end{array}\right\}$ be continuous at $\mathrm{x}=0$ is

1. 1
2. -1
3. ± 1
4. 0

107 In the graph given below, what will be the results of DFS starting from the vertex V_{1} ?

1. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$
2. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{4}$
3. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{5}, \mathrm{~V}_{6}$
4. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}, \mathrm{~V}_{4}, \mathrm{~V}_{6}$

108 If \vec{a}, \vec{b} are unit vectors such that the vector $\vec{a}+3 \vec{b}$ is perpendicular to $7 \vec{a}-5 \vec{b}$ and $\vec{a}-4 \vec{b}$ is perpendicular to $7 \vec{a}-$ $2 \vec{b}$, then the angle between \vec{a} and \vec{b} is

1. $\pi / 6$
2. $\pi / 4$
3. $\pi / 3$
4. $\pi / 2$

109 If the product of n positive integers is unity, then their sum is

1. a positive number
2. divisible by n
3. equal to $n+1 / n$
4. never less than n

110 If \bar{X}_{1} and \bar{X}_{2} are the means of two distributions such that $\bar{X}_{1}<\bar{X}_{2}$ and \bar{X} is the mean of the combined distribution then

1. $\bar{X}<\bar{X}_{1}$
2. $\bar{X}>\bar{X}_{2}$
3. $\bar{X}=\frac{\bar{X}_{1}+\bar{X}_{2}}{2}$
4. $\bar{X}_{1}<\bar{X}<\bar{X}_{2}$

111 If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+1=0$, then A^{-1} is equal to

1. $-\left(3 A^{2}+2 A+5\right)$
2. $3 A^{2}+2 A+5$
3. $3 A^{2}-2 A-5$
4. None of these

112 The ends of the base of an isosceles triangle are at $(2 a, 0)$ and $(0, a)$. The equation of one side is $x=2 a$. The equation of the other side is

1. $x+2 y-a=0$
2. $x+2 y=2 a$
3. $3 x+4 y-4 a=0$
4. $3 x-4 y+4 a=0$

113 The mean age of a combined group of men and women is 25 years. If the mean age of the group of men is 26 and that of the group of women is 21 , then the percentage of men and women in the group is

1. 60,40
2. 80,20
3. 20,80
4. 40,60

114 A reentrant code is one

1. that can modify itself
2. that cannot modify itself
3. that is non-shared
4. none of the above

115 Consider a logical address space of 8 pages of 1024 words each mapped onto a physical memory of 32 frames. How many bits are there in logical and physical addresses respectively?

1. 3 and 5
2. 10 and 5
3. 13 and 15
4. 13 and 13

116 If $\frac{2 x}{x^{3}-1}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1}$, then

1. $\mathrm{A}=\mathrm{B}=\mathrm{C}$
2. $A=B \neq C$
3. $A \neq B=C$
4. $A \neq B \neq C$

117 V. 33 modem uses

1. 64 - QAM
2. 256 - QAM
3. 128 - QAM
4. 32 - QAM

118 A body falling from a height of 10 m rebounds from a hard floor. If it loses 20% of its energy in impact, it will rise up to

1. 10 m
2. 8 m
3. 5 m
4. 12 m

119 You have three coins in your pocket, two fair ones but the third is biased with probability of heads pand tails $1-\mathrm{p}$. One coin selected, at random drops to the floor, landing heads up. How likely is it that it is one of the fair cones?

1. p
2. $1 /(1+p)$
3. $1 / 2$
4. None of the above

120 The cube roots of unity

1. are collinear
2. lie on a circle of radius $\sqrt{3}$
3. form an equilateral triangle
4. None of these
