7922 (N)

Register				
Number			2	

MATHEMATICS — Paper II

(New Syllabus)

Time	Allowed	. 21 F	Jours 1	f
Time.	Allowed	. 45 [10urs	

[Maximum Marks: 100

PART - I

- N. B.: i) This Part contains two Sections, Section A and Section B.
 - ii) Section A contains Multiple Choice Questions. Answer all the 20 questions. Each question carries one mark.
 - iii) Section B contains 15 questions. Answer any ten questions. Each question carries two marks.

SECTION - A

Choose the correct answer from the given alternatives:

 $20 \times 1 = 20$

- 1. If A is $(m \times n)$ matrix and B is $(n \times p)$ matrix, where m, n, p are distinct natural numbers then BA is
 - a) $(m \times p)$ matrix

b) $(n \times n)$ matrix

c) not possible

- d) $(p \times m)$ matrix.
- 2. If A and B are two matrices which satisfy A + B = B then A is
 - a) row matrix

b) column matrix

c) null matrix

d) diagonal matrix.

3.
$$X + \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}$$
 then X is

a) $\begin{pmatrix} -1 & -2 \\ -1 & -2 \end{pmatrix}$

b) $\begin{pmatrix} 4 & 6 \\ 2 & 2 \end{pmatrix}$

c) $\begin{pmatrix} 2 & 2 \\ 0 & -2 \end{pmatrix}$

- d) $\begin{pmatrix} 3 & 8 \\ 1 & 0 \end{pmatrix}$.
- 4. Two chords AB and CD of a circle intersect externally at P. If AP = 10 cm, CP = 6 cm and PD = 5 cm, then PB is
 - a) 10 cm

b) 3 cm

c) 5 cm

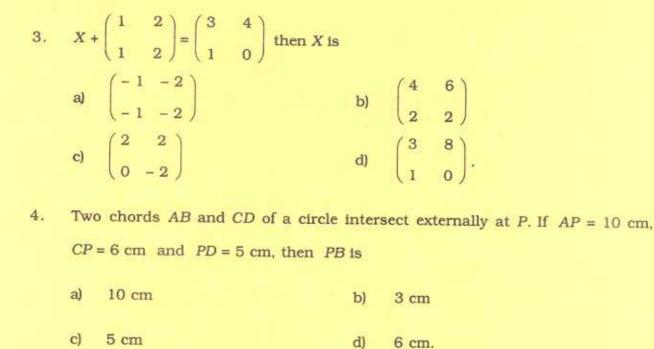
- d) 6 cm.
- If two circles of radii 4 cm and 6 cm touch each other internally, then the distance between their centres is
 - a) 10 cm

b) 2 cm

c) 24 cm

- d) 6 cm.
- In triangle ABC, DE is parallel to BC, AD = 2 cm, AE = 4 cm, EC = 6 cm then AB is
 - a) 3 cm

b) $\frac{1}{3}$ cm


c) 5 cm

- d) 12 cm.
- 7. In triangle PQR, PS is the bisector of $\angle P$. If PQ = 10 cm, PR = 6 cm, QS = 5 cm, then RS is
 - a) 12 cm

b) 6 cm

c) 5 cm

d) 3 cm.

- If two circles of radii 4 cm and 6 cm touch each other internally, then the distance between their centres is
 - a) 10 cm

b) 2 cm

c) 24 cm

- d) 6 cm.
- In triangle ABC, DE is parallel to BC, AD = 2 cm, AE = 4 cm, EC = 6 cm then AB is
 - a) 3 cm

b) $\frac{1}{3}$ cm

c) 5 cm

- d) 12 cm.
- 7. In triangle PQR, PS is the bisector of $\angle P$. If PQ = 10 cm, PR = 6 cm, QS = 5 cm, then RS is
 - a) 12 cm

b) 6 cm

c) 5 cm

d) 3 cm.

The corresponding sides of two similar triangles are in the ratio 4:9. The ratio of their areas is

a) 16:81

b) 2:3

c) 4:9

d) $\frac{1}{4}:\frac{1}{9}$.

The area of a triangle formed by the points (0, 4), (4, 0) and origin is

a) 8 sq.units

b) 16 sq.units

c) 2 sq.units

d) 4 sq.units.

10. If x - y = 3 and x + 2y = 6 are the diameters of the circle, then the centre of the circle is

a) (0,0)

b) (2,2)

c) (1,-1)

d) (4, 1).

11. The straight line given by the equation y = 10 is

a) parallel to y-axis

- b) parallel to x-axis
- c) passing through the origin
- d) perpendicular to x-axis.

12. The X intercept of the line 4x - 7y + 28 = 0 is

a) 7

b) - 7

c) $\frac{1}{7}$

d) $-\frac{1}{7}$.

13. Centroid of a triangle whose vertices are (2, -2), (3, -1), (1, 0) is

a) (1,2)

b) (-1,2)

c) (2, -1)

d) (3, -1).

14. $\frac{\sqrt{1-\sin^2\theta}}{\sin\theta} =$

a) cot θ

b) $\frac{\sin \theta}{2}$

c) tan θ

d) $\frac{1+\sin\theta}{\sin^2\theta}$.

15. If
$$(1-\cos^2\theta)=\frac{3}{4}$$
 then $\sin\theta=$

a) $\frac{\sqrt{3}}{2}$

b) $\frac{1}{2}$

c) 1

d) 0.

16.
$$\frac{\sin 30^{\circ}}{\tan 45^{\circ}}$$
 (1 + cos 60°) =

a) $\frac{3}{2\sqrt{2}}$

b) $\frac{3}{4}$

c) 3

d) 1.

17. The value of $\sin^2 18^\circ + \sin^2 72^\circ$ is

a) - 1

b) 18

c) 72

d) 1.

18. When the angle of elevation of the sun is 45°, the length of the shadow of a tower of height 10 m is

a) $\frac{10}{\sqrt{3}}$ m

b) 10 √3 m

c) $\frac{1}{\sqrt{3}}$ m

d) 10 m.

19. Range of first 20 odd natural numbers is

a) 19

b) 38

c) 20

d) 39.

20. Probability of an impossible event is

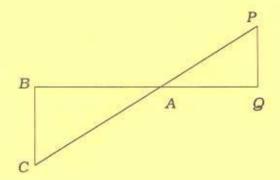
a) 1

b) 5

c) 0

d) 2.

SECTION - B


Answer any ten questions:

 $10 \times 2 = 20$

- 1. Construct a 3×2 matrix whose elements are given by $a_{ij} = 3i 2j$.
- 2. Find the unknowns a, b, c and d in the following matrix equation:

$$\begin{pmatrix} d+1 & 10+a \\ 3b-2 & a-5 \end{pmatrix} = \begin{pmatrix} 2 & 2a+1 \\ b-5 & 4c \end{pmatrix}.$$

- 3. State SSS similarity theorem.
- 4. D and E are respectively the points on the sides AB and AC of Δ ABC such that AB = 2.6 cm, AD = 1.3 cm, AC = 3 cm and AE = 1.5 cm. Show that DE | BC.
- In the figure triangle ABC || triangle AQP, if BC = 4 cm, PQ = 3 cm, AP = 5.7 cm, AQ = 3.6 cm, find AB and AC.

- 6. Find the area of the quadrilateral ABCD whose A(1, 2), B(-3, 4), C(-5, -6) and D(4, -1).
- A (2, 4), B (0, 4) and C (-6, 0) are the given points. Find the slope of the line passing through B and the mid-point of AC.
- 8. Write down the equation of the line perpendicular to 3x + 8y = 12 and passing through the point (-1, -2).
- 9. The line joining (-2, 4) and (3, -5) is parallel to the line joining (0, 4) and (-5, y). Find y.

- 30. Prove that $\frac{\tan^2 \theta}{\sec \theta + 1} = \sec \theta 1$.
- 31. Using the formula $\cos 2\theta = 1 2 \sin^2 \theta$ find the value of $\cos 60^\circ$, given that $\sin 30^\circ = \frac{1}{2}$.
- 32. Evaluate tan (51° 15') + cot (25° 18').
- 33. A tower is $\frac{100}{\sqrt{3}}$ m high. Find the angle of elevation of its top from a point 100 m away from its foot.
- 34. Find the standard deviation of 4, 6, 8, 12 and 15.
- 35. 3 coins are tossed simultaneously. Find the probability of getting at least one head.

PART - II

- N. B.: i) This Part contains four Section C, Section D. Section E and Section F.
 - Section C and Section E contain 3 questions. Answer any two questions in each Section.
 - Section D and Section F contain 4 questions. Answer any three
 questions in each Section.
 - iv) Each question carries five marks.

SECTION - C

Answer any two questions:

 $2 \times 5 = 10$

- State and prove basic proportionality theorem.
- .37. D is the midpoint of side BC of triangle ABC. DP bisects ∠ ADB meeting AB at P and DQ bisects ∠ ADC meeting AC at Q. Prove that PQ | BC.
- 38. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

SECTION - D

Answer any three questions:

 $3 \times 5 = 15$

39. If
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
, show that $A^2 - 5A + 7I_2 = 0$.

40. Find x and y if
$$2x + y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$$
 and $x - 2y = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$.

41. Find the S.D. of the following:

x:	6	9	12	15	18
f:	7	12	13	10	8

42. A number is selected at random from 40 to 80. Find the probability that it is divisible by 6 or 9.

SECTION - E

Answer any two questions :

 $2 \times 5 = 10$

- 43. Prove that $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2 \csc \theta$.
- 44. Find the area of a right-angled triangle with hypotenuse 8 cm and one of the acute angles 57°.
- 45. The angle of elevation of a tower at a point is 45°. After going 20 m towards the foot of the tower the angle of elevation of the tower becomes 60°. Calculate the height of the tower.

SECTION - F

Answer any three questions:

 $3 \times 5 = 15$

46. The vertices of a triangle ABC are A(1, 8), B(-2, 4) and C(8, -5). M and N are the midpoints of AB and AC. Show that MN is parallel to BC and $MN = \frac{1}{2}BC$.

- 47. Find the equation of the straight line which is concurrent with the lines x-y-2=0 and 3x+4y+15=0 and is perpendicular to the line joining the points (2,3) and (1,1).
- 48. The diameters of a circle are 2x + 5y 25 = 0 and 5x + 4y 20 = 0. Find the radius of the circle which passes through the point (3, 4).
- 49. Find the circumcentre of the triangle whose vertices are A (4, 2), B (3, 1) and C (3, 3).

PART - III

- N. B.: i) The Section G of this Part contains 2 questions. Answer any one question.
 - ii) Each question carries ten marks.

SECTION - G

Answer any one question:

 $1 \times 10 = 10$

- 50. Draw a circle of radius 9 cm. Take a point P outside the circle. Without using the centre of the circle draw two tangents to the circle from the point P. Calculate the length of the tangents and verify it.
- 51. Construct a triangle ABC such that AB = 6 cm, $\angle C = 40^{\circ}$ and altitude from C to AB is of length 4 cm. Measure the length of the median through C.