Birla Institute of Technology \& Science, Pilani

Comprehensive Exam.(Closed Book) I Semester 2010-2011
Course Name : Numerical Analysis (AAOC C341)
Max. Time: $\mathbf{3}$ hours

Date: $\mathbf{1}^{\text {st }}$ December, 2010
Max. Marks: 100

Note:

1. Question paper consists of two parts: Part-A \& Part-B.
2. Attempt questions of Part-A and Part-B in two separate answer books. Each subpart of a particular question should be in continuation.
3. Submit all the parts tied together in Sequence: Part-A \&B
4. Use four significant digits with rounding wherever not mentioned.

PART: A

Q. 1 From the following table, estimate the number of students who obtained marks between 40 and 45 :

Marks:	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of Students	31	42	51	35	31

Q. 2 Using the Newton's forward difference form of interpolating polynomial, derive the basic Simson's $1 / 3$ rule to evaluate $\int_{x_{0}}^{x_{2}} f(x) d x$ with spacing h.
Q. 3 (i) Using Divided differences (fitting cubic polynomial), derive the $4^{\text {th }}$ order Adams Moultan predictor formula without error term to find $y\left(x_{n+1}\right)$ as a solution of $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}($ with spacing $h)$.
(ii) Using the above predictor formula and the following corrector formula $y_{n+1}=y_{n}+\frac{h}{24}\left[9 f_{n+1}+19 f_{n}-5 f_{n-1}+f_{n-2}\right]$, find $y(5)$ as a solution of the initial value problem: $5 x \frac{d y}{d x}+y^{2}-2=0, \quad y(1)=0.6966, y(2)=0.8457, y(3)=0.9392, y(4)=1.0$ with $h=1 . \quad[8+4]$
Q. 4 (i) Applying the finite difference method of order 2 (central) to both the differential equation: $x^{2} y^{\prime \prime}(x)-4 x y^{\prime}(x)+6 y(x)=2 x$, and the boundary condition: $y^{\prime}(1)=1.0 \&$ $y^{\prime}(2)=-1$, derive the system of algebraic linear equations in terms of $y(1.0), y(1.5) \& y(2.0)$ (only) with integer coefficients by taking $h=1 / 2$.
(ii) Hence from the above resulting algebraic equations, find the value of $y(1.0), y(1.5) \& y(2.0)$ using Gauss-Elimination method with partial pivoting. Store multipliers and pivoting vector.
[12+8]

Part-B:

1. Using Power method, find the dominant Eigen value and the corresponding eigenvector for the following matrix [take $\left.x^{0}=(1,1,1)^{T}\right]$. (Perform four iterations only)

$$
\left[\begin{array}{lcl}
-15 & 4 & 3 \tag{6}\\
10 & -12 & 6 \\
20 & -4 & 2
\end{array}\right]
$$

2. Solve the equation $\frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}-y^{2}$ with initial conditions as $y(0)=1$ and $\left(\frac{d y}{d x}\right)_{x=0}=0$; with spacing $h=0.2$ to find an approximate value of $y(0.2)$ using Runga Kutta method of order-4.
3. Using Newton's method, reduce the nonlinear system:

$$
\begin{aligned}
& x^{2} y+y^{3}-3 z^{2}=-6 \\
& 5 x^{3} z+2 y^{2}+z^{2}=-5 \\
& 2 x^{2} y^{3} z-3 z=4
\end{aligned}
$$

to a system of linear equations in h_{1}, h_{2} and h_{3} to obtain the solution:

$$
x=-1+h_{1}, \quad y=1+h_{2} \text { and } z=2+h_{3}
$$

Hence perform one iteration of Gauss-Seidel method to find the solution of resulting system in h_{1}, h_{2} and h_{3} with initial vector $(0,1,1)^{T}$ so that the iteration scheme converges to true solution.
[12]
4. Solve the equation $\frac{d^{2} y}{d x^{2}}+2 y=x$ with boundary conditions $y(0)=1$, and $y(1)=2$ by Galarkin's method using cubic polynomial as trial functions.
[12]
5. The equation $x e^{1-x}=1$ has a root at $x=1$. Starting with $x_{0}=0$, find the above root correct up to six decimal places by a suitable method of quadratic convergence. Define the order of convergence and hence verify that the order of convergence is quadratic for the above problem.

