SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E. / B. Tech - IT/ECE
Title of the paper: Higher Mathematics
Semester: IV
Sub.Code: 112402/113401
Date: 17-04-2007

Max. Marks: 80
Time: 3 Hours
Session: FN

PART - A

$(10 \times 2=20)$
Answer ALL the Questions

1. If $f(x)=\sin p x$ is defined in the interval $(-l, l)$ find the value of a_{0} and a_{n} (p is not an integer).
2. Find the half range sine series for $f(x)=2$ in $0<x<4$.
3. Write the complete integral of $Z=p x+q y+p q$.
4. Find the complete integral of $q=2 p x$.
5. Classify the following equations:
(i) $\mathrm{U}_{\mathrm{xx}}+2 \mathrm{U}_{\mathrm{xy}}+\mathrm{U}_{\mathrm{yy}}=0$.
(ii) $\mathrm{Xf}_{\mathrm{xx}}+\mathrm{yf}_{\mathrm{yy}}=0, \mathrm{x}>0, \mathrm{y}>0$.
6. In one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right), \alpha^{2}$ is termed as -
7. Write any two solutions of the Laplace equation obtained by the method of separation of variables.
8. The steady state temperature distribution is considered in a square plate with sides $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{a}$. The edge $\mathrm{y}=0$ is kept at a constant temperature T and the other three edges are insulated. The same state is continued subsequently. Express the problem mathematically.
9. Define finite Fourier cosine transform of $f(x)$ in $(0, l)$.
10. If $\mathrm{F}_{\mathrm{s}}(\mathrm{s})$ is the Fourier sine transform of $\mathrm{f}(\mathrm{x})$, show that $\mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}]=1 / 2\left[\mathrm{~F}_{\mathrm{s}}(\mathrm{S}+\mathrm{a})+\mathrm{F}_{\mathrm{s}}(\mathrm{s}-\mathrm{a})\right]$.

PART - B

Answer All the Questions
$(5 \times 12=60)$
11. (a) Find Fourier series for the function $f(x)=\left\{\begin{array}{lc}1+2 x / \pi, & -\pi<x<0 \\ 1-2 x / \pi, & 0<x<\pi\end{array}\right.$
(b) Obtain sine series for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $(0,-l)$.
(or)
12. (a) Find the Fourier series expansion of the periodic function $\mathrm{f}(\mathrm{x})$ of period $2 l$ defined by
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}l+\mathrm{x},-l \leq \mathrm{x} \leq 0 . \\ l-\mathrm{x}, \quad 0 \leq \mathrm{x} \leq l .\end{array}\right.$
(b) Find the half range sine series for

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
2 x / l, 0<\mathrm{x}<l / 2 \\
2(l-\mathrm{x}) / l, l / 2<\mathrm{x}<l
\end{array}\right.
$$

13. (a) Form the partial differential equation by eliminating arbitrary constants from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
(b) Solve $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$.
(or)
14. (a) Solve: $9\left(p^{2} z+q^{2}\right)=4$.
(b) Solve: $\left(D^{3}-7 D^{2}-6 D^{\beta}\right) z=x^{2} y+\sin (x+2 y)$.
15. A string is tightly stretched and its ends are fastened at two points $\mathrm{x}=0$ and $\mathrm{x}=\boldsymbol{l}$. The midpoint of the string is displaced transversely through a small distance ' b ' and the string is released from rest in that position. Find an expression for the transverse displacement of the string at any time during the subsequent motion.
(or)
16. A rod 30 cm long, has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so. Find the resulting temperature function $\mathrm{u}(\mathrm{x}, \mathrm{t})$ taking $\mathrm{x}=0$ at A .
17. A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered as an infinite plate. If the temperature along short edge $\mathrm{y}=0$ is $u(x, 0)=100 \sin \pi x / 8,0<x<8$ while two long edges $x=0$ and $x=8$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature at any point of the plate.
(or)
18. A plate in the form of a ring is bounded by the circles $r=5$ and $\mathrm{r}=10$. Its surfaces are insulated and the temperature along the boundary are

$$
\begin{aligned}
& \mathrm{u}(5, \theta)=10 \cos \theta+6 \sin \theta \\
& \mathrm{u}(10, \theta)=17 \cos \theta+15 \sin \theta
\end{aligned}
$$

Find the steady steady state temperature in the plate.
19. (a) Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{ax}}, \mathrm{a}>0$ and hence deduce the inversion formula.
(b) Find the Fourier transform of

$$
\mathrm{f}(\mathrm{x})=\begin{aligned}
& 1-|\mathrm{x}|, \text { if }|\mathrm{x}|<1 \\
& 0, \text { if }|\mathrm{x}|>1
\end{aligned}
$$

and hence find the value $\int_{0}^{\infty} \frac{\operatorname{Sin}^{4} t}{\mathrm{t}^{4}} \mathrm{dt}$.
(or)
20. (a) Using Parseval's identity, calculate $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$.
(b) Find finite Fourier sine and cosine transforms of $f(x)=e^{a x}$ in ($0, \boldsymbol{l}$).

