Register Number

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech-Common to ALL BranchesTitle of the Paper: Engineering Mathematics – IV Max. Marks: 80Sub. Code: 401-6C0054Time: 3 HoursDate: 16/11/2010Session: AN

PART - A $(10 \times 2 = 20)$ Answer ALL the Questions

- 1. State the sufficient conditions for a function f(x) to be expanded as a Fourier series.
- 2. Define RMS value and hence find the RMS value of $f(x) = x^2$ in $(-\pi, \pi)$.
- 3. Form the pde by elminating arbitrary constants from the relation $z = ax^n + by^n$.
- 4. Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$.
- 5. State the assumptions in derving one-dimensional wave equation.
- 6. Write the possible solutions of the one-dimensional heat flow(un steady state) equation $u_t = \alpha^2 u_{xx}$.
- 7. Define steady state.
- 8. Write the possible solutions of $r^2 u_{rr} + ru_r + u_{\theta\theta} = 0$.

- 9. Find the fourier sine transform of $\frac{1}{x}$.
- 10. State convolution theorem on Fourier transforms.

PART – B
$$(5 \times 12 = 60)$$

Answer All the Questions

11. (a) Express $f(x) = (\pi - x)^2$ as a Fourier series of periodicity 2π in 0< $x < 2\pi$ and hence deduce the sum $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \infty$.

(b)Using six ordinates analyse harmonically the following data upto two harmonics.

X	0	π	2π	π	4π	5π				
		3	3		3	3				
у	10	12	15	20	17	11				
(or)										

		Expand				of	sines	if
	F(x) = -	$\int \sin x$	for	$0 \leq c$	$x \le \frac{\pi}{4}$			
ľ	$\Gamma(x) =$	$\int \cos x$	for	$\frac{\pi}{4} \leq$	$x \leq \frac{\pi}{2}$			

(b)Expand $f(x) = e^{-ax}, -\pi < x < \pi$ as a complex form series.

13. (a) Form the PDE by eliminating F from the relation $xy + yz + zx = f\left(\frac{z}{x+y}\right)$.

(b) Solve
$$(2z - y) p + (x + z) q = -(2x + y)$$
.

- 14. (a) Solve $p^2 + q^2 = x^2 + y^2$. (b) Solve $(D^2 - 3DD^1 + 2D^{1^2})z = (2 + 4x)e^{x+2y}$.
- 15. A taut string of length '2l' is fastened at both ends. The mid point of the string is taken to a height 'h' and then released from rest in that position. Find the displacement of the string.

(or)

16. Solve
$$\frac{\partial u}{\partial t} \alpha^2 \frac{\partial^2 u}{\partial x^2}$$
 subject to the
conditions (i) u is not infinite as $t \to \infty$
(ii) $u = 0$ for $x = 0$ and $x = \pi$ for all t
(iii) $u = \pi x - x^2$ for $t = 0$ in $(0, \pi)$.

17. A long rectangular plate with insulated surfaces is π cm wide. The two long edges as well as one of the short edges are kept at 0°C while 0 the short edge y = 0 is kept at a temperature u₀°C. Find the steady state temperature distribution in the plate.

(or)

18. A semi circular plate of radius a cm has insulated faces and heat flows in plane curves. The bounding diameter is kept at 0°C and the semi circumference is maintained at temperature given

by
$$u(a, \theta) = \begin{cases} \frac{k\theta}{\pi}, & 0 \le 0 \le \frac{\pi}{2} \\ \frac{k}{\pi}(\pi - \theta), & \frac{\pi}{2} \le \theta \le \pi \end{cases}$$

Find the steady state temperature distribution.

19. (a) Find the Fourier transforms of

$$f(x) = \begin{cases} a - |x| & \text{for } |x| < a \\ 0 & \text{for } |x| > a > 0 \end{cases}$$
 and hence deduce the value

$$\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt.$$
(b) Solve the integral equation

$$\int_{0}^{\infty} f(x) \cos \lambda x dx = e^{-\lambda}, \lambda > 0.$$
(or)

20. (a) Find the Fourier cosine transform of e^{-x^2}

(b) Find the finite fourier sine transform of $f(x) = \left(1 - \frac{x}{\pi}\right)^2, 0 < x < \pi.$