
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech-Common to ALL Branches
Title of the Paper: Engineering Mathematics - IV Max. Marks: 80
Sub. Code: 401-6C0054
Date: 16/11/2010
Time: 3 Hours
Session: AN

PART - A
 $(10 \times 2=20)$

Answer ALL the Questions

1. State the sufficient conditions for a function $f(x)$ to be expanded as a Fourier series.
2. Define RMS value and hence find the RMS value of $f(x)=x^{2}$ in $(-\pi, \pi)$.
3. Form the pde by elminating arbitrary constants from the relation $z=a x^{n}+b y^{n}$.
4. Find the complete integral of $\frac{z}{p q}=\frac{x}{q}+\frac{y}{p}+\sqrt{p q}$.
5. State the assumptions in derving one-dimensional wave equation.
6. Write the possible solutions of the one-dimensional heat flow(un steady state) equation $u_{t}=\alpha^{2} u_{x x}$.
7. Define steady state.
8. Write the possible solutions of $r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0$.
9. Find the fourier sine transform of $\frac{1}{x}$.
10. State convolution theorem on Fourier transforms.

$$
\text { PART - B } \quad(5 \times 12=60)
$$

Answer All the Questions
11. (a) Express $f(x)=(\pi-x)^{2}$ as a Fourier series of periodicity 2π in 0 $<x<2 \pi$ and hence deduce the sum $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots . \infty$.
(b)Using six ordinates analyse harmonically the following data upto two harmonics.

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$
y	10	12	15	20	17	11

12. (a) Expand $f(x)$ a series of sines if

$$
F(x)=\left\{\begin{array}{lll}
\sin x & \text { for } & 0 \leq x \leq \frac{\pi}{4} \\
\cos x & \text { for } & \frac{\pi}{4} \leq x \leq \frac{\pi}{2}
\end{array}\right.
$$

(b)Expand $f(x)=e^{-a x},-\pi<x<\pi$ as a complex form series.
13. (a) Form the PDE by eliminating F from the relation $x y+y z+z x=f\left(\frac{z}{x+y}\right)$.
(b) Solve $(2 z-y) p+(x+z) q=-(2 x+y)$.
(or)
14. (a) Solve $p^{2}+q^{2}=x^{2}+y^{2}$.
(b) Solve $\left(D^{2}-3 D D^{1}+2 D^{1^{2}}\right) z=(2+4 x) e^{x+2 y}$.
15. A taut string of length ' $2 l$ ' is fastened at both ends. The mid point of the string is taken to a height ' h ' and then released from rest in that position. Find the displacement of the string.
(or)
16. Solve $\frac{\partial u}{\partial t} \alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the
conditions \quad (i) u is not infinite as $\mathrm{t} \rightarrow \infty$
(ii) $\mathrm{u}=0$ for $\mathrm{x}=0$ and $\mathrm{x}=\pi$ for all t
(iii) $u=\pi x-x^{2}$ for $t=0$ in $(0, \pi)$.
17. A long rectangular plate with insulated surfaces is $\pi \mathrm{cm}$ wide. The two long edges as well as one of the short edges are kept at $0^{\circ} \mathrm{C}$ while 0 the short edge $\mathrm{y}=0$ is kept at a temperature $\mathrm{u}_{0}{ }^{\circ} \mathrm{C}$. Find the steady state temperature distribution in the plate. (or)
18. A semi circular plate of radius a cm has insulated faces and heat flows in plane curves. The bounding diameter is kept at $0^{\circ} \mathrm{C}$ and the semi circumference is maintained at temperature given by $u(a, \theta)=\left\{\begin{array}{cl}\frac{k \theta}{\pi}, & 0 \leq 0 \leq \frac{\pi}{2} \\ \frac{k}{\pi}(\pi-\theta) . & \frac{\pi}{2} \leq \theta \leq \pi\end{array}\right.$
Find the steady state temperature distribution.
19. (a) Find the Fourier transforms of

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
a-|x| & \text { for } \quad|x|<a \\
0 & \text { for }
\end{array}|x|>a>0\right.
\end{aligned} \text { and hence deduce the value } ~=~ \text { of } \int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t . ~ \text { integral equation } \quad \begin{aligned}
& \text { (b) } \quad \text { Solve } \quad \begin{array}{l}
\text { (or) }
\end{array} \int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda}, \lambda>0 .
\end{aligned}
$$

20. (a) Find the Fourier cosine transform of $e^{-x^{2}}$
(b) Find the finite fourier sine transform of

$$
f(x)=\left(1-\frac{x}{\pi}\right)^{2}, 0<x<\pi
$$

