SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY DEEMED UNIVERSITY

Course: B.E./B.Tech.
Semester: IV
Title of the paper: Engineering Mathematics - IV Max. Marks: 80 Sub. Code: 401 (2002/2003/2004)

Time: 3 Hours
PART - A

Answer ALL the Questions

1. State the convergence of Fourier series of a function $f(x)$ in any given interval, (i) when $f(x)$ is continuous throughout and (ii) when $f(x)$ has a point of discontinuity.
2. State the complex form of the Fourier series for a function $f(x)$ in the interval ($\mathrm{c}, \mathrm{c}+2 l$).
3. Define singular solution of a partial differential equation.
4. Form the partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from the equation $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
5. Derive the one - dimensional wave equation starting from the equation of motion.
6. List the various solutions of the equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
7. Express $\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}=0$ in its equivalent polar form.
8. List all the solution for a two-dimensional heat equation in steady state in polar coordinates.
9. Show that $\mathrm{F}_{\mathrm{c}}[\mathrm{f}(\mathrm{x}) \sin \mathrm{ax}]=1 / 2\left[\mathrm{~F}_{\mathrm{s}}(\mathrm{a}+\mathrm{s})+\mathrm{F}_{\mathrm{s}}(\mathrm{a}-\mathrm{s})\right]$, if $\mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]=$ $\mathrm{F}_{\mathrm{s}}(\mathrm{s})$ and $\mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]$ is called the Fourier sine transform of $\mathrm{f}(\mathrm{x})$.
10. State Parseval's identities for Fourier sine and cosine transforms.

$$
\begin{array}{cl}
\text { PART - B } & (5 \times 12=60) \\
\text { Answer ALL the Questions } &
\end{array}
$$

11. (a) Find the Fourier series of $f(x)=x+x^{2}$ in $(-\pi, \pi)$ of periodicity 2π. Hence, show that the sum $\sum_{1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(b) Express $f(x)=|x|$ in the interval $-\pi<x<\pi$ as a Fourier
series. Hence, show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . \infty=\frac{\pi^{2}}{8}$.
(or)
12. (a) Find the Fourier series of periodicity 2 for $f(x)=\pi x, 0 \leq x<1$ and $\mathrm{f}(\mathrm{x})=\pi(2-\mathrm{x}), 1<\mathrm{x} \leq 2$.
(b) The displacements y of a part of mechanism corresponding to the movements x of the crank are tabulated as follows:

x	0	30	60	90	120	150	180	210	240	270	300	330
y	1.8	1.1	0.3	0.16	0.5	1.5	2.16	1.88	1.25	1.3	1.76	2.0

Express $y=f(x)$ in a Fourier series up to the third harmonic.
13. (a) From the partial differential equation of all spheres of radius ' c ' units and having their centers in the X o Y plane.
(b) Solve: $x\left(y^{2}+z^{2}\right) p+y\left(z^{2}+x^{2}\right) q=z\left(y^{2}-x^{2}\right)$.
(or)
14. (a) Solve: $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$.
(b) Solve: $\left(D^{2}+2 D D^{\prime}-D^{\prime 2}\right) z=x^{2} y$.
15. A uniform elastic string of length 60 cm is subjected to a constant tension of 2 kg . If the ends are fixed and the initial displacement is $y(x, 0)=60 x-x^{2}, 0<x<60$, while the initial velocity is zero, find the displacement function $y(x, t)$.
(or)
16. An insulated metal rod of length 100 cm has one end A kept at $0^{\circ} \mathrm{C}$ and the other end Bat $100^{\circ} \mathrm{C}$, until steady state conditions prevail. At time $t=0$, the temperature at A is then suddenly raised to 50° and thereafter maintained while at the same time $t=$ 0 , the end B is insulated. Find the temperature distribution at any point of the rod at any subsequent time.
17. Find the steady state temperature at any point of a square plate whose two adjacent edges are kept at 0° and the other two edges at $100^{\circ} \mathrm{C}$.

> (or)
18. A plate with insulated surfaces has the shape of a quadrant of a circle of radius 10 cm . The bounding radii $\theta=0$ and $\theta=\pi / 2$ are kept at $0^{\circ} \mathrm{C}$ and the temperature along the circular quadrant is kept at $100\left(\pi \theta-2 \theta^{2}\right)^{\circ} \mathrm{C}$, for $0 \leq \theta \leq \pi / 2$ until steady state conditions prevail. Find the steady state temperature at any point on the plate.
19. (a) Applying the Fourier sine Transform
$f(t)=\left\{\begin{array}{cll}\sin t, & \text { when } & 0<t \leq \pi \\ 0, & \text { when } & t>\pi,\end{array}\right.$
(b) Find the Fourier transform of $f(x)= \begin{cases}x^{2} & , \text { for }|x|<a \\ 0 & , \text { for }|x|>a\end{cases}$
(or)
20. (a) Find the Fourier sine and cosine transforms of $f(x)=e^{-a x}$.
(b) Use Parseval's identity to evaluate

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}} \text { and } \int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{2}} d x \quad(a>0) .
$$

