SATHYABAMA UNIVERSITY
 (Established under section 3 of UGC Act,1956)

Course \& Branch: B. E/B.Tech CSE/ECE/EEE/MECH/M\&P/E\&C/EIE/CIVIL/IT/CHEM/ETCE/AERO Title of the paper: Engineering Mathematics - IV
Semester: IV
Sub.Code: 401(2002/2003/2004)
Date: 30-11-2006
Max. Marks: 80
Time: 3 Hours
Session: AN

PART - A
$(10 \times 2=20)$

Answer ALL the Questions

1. Find a Fourier sine series for the function $f(x)=1,0<x<\pi$.
2. State Dirichlet's conditions for a given function to expand in Fourier series.
3. Find the partial differential equation of the family of spheres having their centres on the line $\mathrm{x}=\mathrm{y}=\mathrm{z}$.
4. Find the completer integral of $q=2 p x$.
5. State the assumptions involved in obtaining the PDE of vibration of string.
6. How many conditions are required to $\frac{\partial^{2} y}{\partial t^{2}}=\propto^{2} \frac{\partial^{2} y}{\partial x^{2}}$.
7. What are the solutions of $\nabla^{2} u=0$ in polar form?
8. What are the possible solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
9. If $\mathrm{F}[\mathrm{f}(\mathrm{x})]=\mathrm{F}(\mathrm{s})$ then, $\mathrm{F}[\mathrm{f}(\mathrm{x}-\mathrm{a})]=$
10. Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{x}}, \mathrm{x} \geq 0$.

$$
\text { PART - B } \quad(5 \times 12=60)
$$

Answer ALL the Questions

11. (a) Find the Fourier series of $\left(\frac{\pi-x}{2}\right)^{2}$ in $(0,2 \pi)$ and hence find the sum of the series $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots$.
(b) Find the sine series of $f(x)=\left\{\begin{array}{ccc}x & \text { in } 0<x<1 \\ 2-x & \text { in } 1<x<2\end{array}\right.$
(or)
12. (a) Obtain the Fourier series of $f(x)=x \sin x$, in $-\pi<x<\pi$.
(b) Expand $\mathrm{f}(\mathrm{x})=\mathrm{x}$ as a cosine series in $0<\mathrm{x}<1$ and deduce the values of $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots \ldots \ldots$.
13. (a) Obtain the partial differential equation by eliminating f from

$$
f\left(x^{2}+y^{2}+z^{2}, x+y+z\right)=0
$$

(b) Solve $z^{2}\left(P^{2}+q^{2}\right)=x^{2}+y^{2}$.
(or)
14. (a) Solve $\left(x^{2}=y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$
(b) Solve $\left(D^{2}+2 D^{\prime}+2 D^{\prime 2}\right) z=x^{2} y$
15. A string of length $2 l$ is fastened at both ends. The mid point of the string is taken to a height h and then released from rest in that position. Find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$
(or)
16. Solve $\frac{\partial u}{\partial t}=\propto^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad$ subject to the conditions.
(a) u is finite as $\mathrm{t} \rightarrow \propto$
(b) $\frac{\partial u}{\partial x}=0$ for $x=0$ and $x=l$.
(c) $\mathrm{u}=\left\{\begin{array}{cc}x & \text { for } 0<x<\frac{l}{2} \\ l-x & \text { for } \frac{l}{2} \leq x<l .\end{array}\right.$
17. Find the steady state temperature in a circular plate of radius ' a ' which has one half of its circumference at $0^{\circ} \mathrm{C}$ and the other half at $100^{\circ} \mathrm{C}$.
(or)
18. A semi-Circular plate of radius a has its circumference maintained at $u(a, \theta)=K \theta(\pi-\theta)$ for $0<\theta<\pi$ while the bounding diameter is maintained at $0^{\circ} \mathrm{C}$. Assuming the lateral surface of the plate is insulated, find the Temperature distribution $\mathrm{u}(\mathrm{r}, \theta)$ in the steady state.
19. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{lll}a-|x| & \text { if } & |x| \leq a \\ 0 & \text { if } & |x|>a>0\end{array}\right.$
(b) Hence deduce that $\int_{0}^{\frac{\pi}{2}}\left(\frac{\operatorname{sint}}{\mathrm{t}}\right)^{2} \mathrm{dt}=\frac{\pi}{2}$
(or)
20. (a) State and prove parseval's identify.
(b) Using parseval's identify evaluate $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$.

