SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)

Course & Branch: B. E/B.Tech -	
CSE/ECE/EEE/MECH/M&P/E&C/EIE/CIVIL/IT/CHEM/ETCE/AERO	
Title of the paper: Engineering Mathematics - IV	
Semester: IV	Max. Marks: 80
Sub.Code: 401(2002/2003/2004)	Time: 3 Hours
Date: 30-11-2006	Session: AN

PART – A (10 x 2 = 20)Answer ALL the Questions

- 1. Find a Fourier sine series for the function f(x) = 1, $0 < x < \pi$.
- 2. State Dirichlet's conditions for a given function to expand in Fourier series.
- 3. Find the partial differential equation of the family of spheres having their centres on the line x = y = z.
- 4. Find the completer integral of q = 2px.
- 5. State the assumptions involved in obtaining the PDE of vibration of string.
- 6. How many conditions are required to $\frac{\partial^2 y}{\partial t^2} = \infty^2 \frac{\partial^2 y}{\partial x^2}$.
- 7. What are the solutions of $\nabla^2 u = 0$ in polar form?
- 8. What are the possible solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$
- 9. If F[f(x)] = F(s) then, $F[f(x a)] = \dots$

10. Find the Fourier cosine transform of e^{-x} , $x \ge 0$.

PART – B
$$(5 \times 12 = 60)$$

Answer ALL the Questions

11. (a) Find the Fourier series of $\left(\frac{\pi - x}{2}\right)^2$ in (0, 2π) and hence find the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^$

13. (a) Obtain the partial differential equation by eliminating f from $f(x^2 + y^2 + z^2, x + y + z) = 0$

(b) Solve
$$z^{2}(P^{2} + q^{2}) = x^{2} + y^{2}$$
.
(or)
14. (a) Solve $(x^{2} = yz)p + (y^{2} - zx)q = z^{2} - xy$
(b) Solve $(D^{2} + 2DD' + 2D'^{2})z = x^{2}y$

15. A string of length 2l is fastened at both ends. The mid point of the string is taken to a height h and then released from rest in that position. Find the displacement y(x,t)

16. Solve $\frac{\partial u}{\partial t} = \infty^2 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions. (a) u is finite as $t \to \infty$ (b) $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l. (c) $u = \begin{cases} x & \text{for } 0 < x < \frac{l}{2} \\ l - x & \text{for } \frac{l}{2} \le x < l. \end{cases}$

17. Find the steady state temperature in a circular plate of radius 'a' which has one half of its circumference at 0°C and the other half at 100°C.

(or)

- 18. A semi-Circular plate of radius a has its circumference maintained at $u(a,\theta) = K\theta (\pi - \theta)$ for $0 < \theta < \pi$ while the bounding diameter is maintained at 0°C. Assuming the lateral surface of the plate is insulated, find the Temperature distribution $u(r, \theta)$ in the steady state.
- 19. (a) Find the Fourier transform of $f(x) = \begin{cases} a |x| & \text{if } |x| \le a \\ 0 & \text{if } |x| > a > 0 \end{cases}$

(or)

(b) Hence deduce that
$$\int_{0}^{\frac{\pi}{2}} \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$$

- 20. (a) State and prove parseval's identify. $_{\propto}$
 - (b) Using parseval's identify evaluate

$$\int_{0} \frac{\mathrm{d}x}{(\mathrm{a}^2 + \mathrm{x}^2)^2}$$