SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Except to Bio Groups \& EEE 2005 Batch)
Title of the paper: Engineering Mathematics - IV
Semester: IV
Sub.Code: 401(2003/2004/2005)6C0054
Date: 10-11-2008
Max. Marks: 80
Time: 3 Hours
Session: AN

$$
\begin{array}{cl}
\text { PART - A } & (10 \times 2=20) \\
\text { Answer All the Questions } &
\end{array}
$$

1. State the conditions for which a function $f(x)$ to be expaded as a Fourier series.
2. State the Parseval's identity corresponding to a complex fourier series.
3. Form the partial differential equation of all the planes cutting equal intercepts on $u \mathrm{X}$ and Y axes.
4. Solve $\left(D^{2}+D D^{1}+D^{1^{2}}\right) Z=0$.
5. Write the possible solutions of the one-dimensional wave equation $y_{t t}=c^{2} y_{x x}$.
6. State the empirical assumed in deriving one-dimensional heat flow equation (un steady state).
7. Define steady state, unsteady state.
8. Write the periodic solutions in y and x of laplace equation $\nabla^{2} u=0$.
9. State the change of scale property on Fourier transforms.
10. Find the infinite fourier sine transform of $\frac{1}{x}$.

$$
\begin{array}{cl}
\text { PART }-\mathrm{B} & (5 \times 12=60) \\
\text { Answer ALL the Questions }
\end{array}
$$

11. (a) Expand $f(x)=|x|$ as a full range Fourier series and hence deduce the value of $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \infty$.
(b) Expand $f(x)=2 x-x^{2}, 0<x<3$ as a half range sine series. (or)
12. (a) Expand the function $f(x)=\sin x, 0<x<\pi$ as a series of cosines.
(b) Find the constant term and the co-efficient of the first sine and cosine terms in the fourier expansion of y as given in the following table

X	0	1	2	3	4	5
Y	9	18	24	28	26	20

13. (a) Form the PDE by eliminating the arbitrary constants a, b from the relation: $z=\frac{1}{2}(\sqrt{x+a}+\sqrt{y-a}+b$.$) .$
(b) Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x$. (or)
14. (a) Find the general solution of
$x\left(z^{2}-y^{2}\right) p+y\left(x^{2}-z^{2}\right) q=z\left(y^{2}-x^{2}\right)$
(b) Solve $z\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$.
15. If a string of length l is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{(x, 0)}=V_{0} \sin ^{3}\left(\frac{\pi x}{l}\right), 0<x<l$. determine the transverse displacement $\mathrm{y}=(\mathrm{x}, \mathrm{t})$.
(or)
16. Solve $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions
(i) u is not infinite as $t \rightarrow \infty$
(ii) $\mathrm{u}=0$ for $\mathrm{x}=0$ and $\mathrm{x}=\pi$ for all t
(iii) $\mathrm{u}=\pi \mathrm{x}-\mathrm{x}^{2}$ for $\mathrm{t}=0$ in $0<\mathrm{x}<\pi$.
17. A square plate is bounded by the lines $x=0, y=0, x=20, y=$ 20. Its faces are insulated The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x)$ where $0<x<20$, which the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature $\mathrm{u}(\mathrm{x}, \mathrm{y})$.

> (or)
18. A semi circular plate of radius ' a ' cm has insulated faces and heat flows in plane curves. The bounding diameter is kept at $0^{\circ} \mathrm{C}$ and the semi-circumference is maintained at temperature given by

$$
u(a, \theta)=\left\{\begin{array}{cc}
\frac{k \theta}{\pi} & 0 \leq \theta \leq \frac{\pi}{2} \\
\frac{k}{\pi}(\pi-\theta) & \frac{\pi}{2} \leq \theta \leq \pi
\end{array}\right.
$$

Find the steady-state temperature distribution.
19. (a) Show that the Fourier transform of

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
a-|x| & \text { for }|x|<a \\
0 & \text { for }|x|>a>0
\end{array}\right. \\
& i s \sqrt{\frac{2}{\pi}\left(\frac{1-\cos a s}{s^{2}}\right)} \text { Hence deduce the value of } \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t .
\end{aligned}
$$

(b) Find the finite Fourier sine, Cosine transforms of

$$
\begin{equation*}
f(x)=\left(1-\frac{x}{\pi}\right)^{2}, 0<x<\pi \tag{or}
\end{equation*}
$$

20. (a) Find the Fourier cosine transform of $e^{-a^{2} x^{2}}$ and hence evaluate the fourier sine transform of $x e^{-a^{2} x^{2}}$.

$$
\begin{aligned}
& \text { (b) } \\
& \text { Solve } \\
& \text { the } \\
& \text { integral } \\
& \int_{0}^{\infty} f(x) \sin \lambda x d x=\left\{\begin{array}{ccc}
1 & \text { for } & 0 \leq \lambda<1 \\
2 & \text { for } & 1 \leq \lambda \leq 2 \\
0 & \text { for } & \lambda \geq 2
\end{array}\right.
\end{aligned}
$$

