SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech – Common to ALL Br	anches
(Except to Bio Groups)	
Title of the paper: Engineering Mathematics - IV	
Semester: IV	Max.Marks: 80
Sub.Code: 401(2003-2004-2005)- 6C0054(2006-2007	7)Time: 3 Hours
Date: 24-04-2009	Session: FN

PART – A (10 x 2 = 20)Answer All the Questions

- 1. Write the Dirichlet's conditions for expansion of Fourier series.
- 2. Write the complex form of the Fourier series for $f(x) = e^{-x}$ in the interval (-1, 1).
- 3. Form the p.d.e by eliminating the arbitrary function from $z = f(x^2 + y^2)$.
- 4. Find the particular integral of $(D^2 DD')z = sinxcos2y$.
- 5. A string is fixed at the end points x = 0 and x = l, is initially at rest in its equilibrium position. It is set vibrating by giving a velocity $\lambda x (l x)$. Write down the boundary conditions for the problem.
- 6. State any two of the empirical laws used to derive the one dimensional heat equation.
- 7. Write down the differential equation for two dimensional heat flow for unsteady case.

- 8. Write the most general solution of the steady state temperature at an arbitrary point (r, θ) in the annulus.
- 9. If F(s) = F(f(x)) then show that F(f'(x)) = -is F(s).
- 10. Find the finite fourier cosine transform of f(x) = x in $(0, \pi)$.

PART – B
$$(5 x 12 = 60)$$

11. (a) Obtain the Fourier series for the funciton f(x) = |x| in the interval $(-\pi, \pi)$ and using this series find the RMS value of f(x) in the interval.

(b) Obtain the fourier series for f(x) upto the first harmonic from the following data:

X	0	π	2π	π	4π	5π	2π
		3	3		3	3	
f(x)	3	4	3	1	0	1	3

(or)

12. (a) Expand $f(x) = x - x^2$ as a Fourier series in -1 < x < 1.

(b) Express f(x) = x in half range sine series of periodicity 2l in the range 0 < x < l and deduce the value of $\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$

(or)

$$\left(\frac{1}{1^4}\right)^+ \left(\frac{1}{3^4}\right)^+ \left(\frac{1}{5^4}\right)^+ \dots t$$

13. (a) Solve $(D^2 - 6DD' + 5D'^2)z = e^x \sinh y$. (b) Solve (mz - ny) p + (nx - lz) q = ly - mx.

14. (a) Solve
$$z = px + qy + p^2 + q^2$$
.

(b) Solve
$$(D^2 + 4DD' - 5D'^2)z = x + y^2 + \pi$$
.

15. A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y(x, 0) = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. If it is released form rest from this position, find the displacement y at any time and at any distance from the end x = 0.

- 16. Find the temperature u(x, t) in a silver bar which is perfectly insulated laterally, if the ends are kept at 0°C and it initially, the temperature is 5°C, at the center of the bar and falls uniformly to zero at its ends.
- 17. A long rectangular plate with insulated surface is one cm wide. If the temperature along one short edge y = 0 is $u(x, 0) = K(lx - x^2)$ degree, for 0 < x < l. While the two long edges x = 0 and x = l as well as the other short edge are kept at 0°C find the steady state temperature function u(x, y).

- 18. Find the steady state temperature in a circular plate of radius 'a' which has one half of its circumference at 0°C and the other half at K°C.
- 19. (a) State and prove convolution theorem on Fourier transform.

by

 e^{-as}

(b) Find the Fourier transform of
$$f(x)$$
 given

$$f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
and hence find the value of $\int_{0}^{\infty} \left(\frac{\sin^{4} t}{t^{4}}\right) dt$.
(or)

20. (a) Find Fourier sine and cosine transform of x^{n-1} .

(b) Find the function if its sine transform is ⁻

⁽or)