AMIETE - ET (OLD SCHEME)

Code: AE07
Time: 3 Hours

Subject: NUMERICAL ANALYSIS \& COMPUTER PROGRAMMING
Max. Marks: 100
DECEMBER 2009

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

(2×10)
a. The value of π is approximated by $22 / 7$. If seven significant digits are used, the percentage relative error in this approximation is
(A) 0.4 .
(B) 0.04 .
(C) 2.2.
(D) 4 .
b. A root of the equation $x^{2}+x-\cos x=0$ is near -1.25 . Using one iteration of the Newton-Raphson method, the next approximation to the root is obtained as
(A) -1.25115 .
(B) -1.29856 .
(C) -1.70161 .
(D) 1.26211 .
c. The data $\mathrm{P}(1)=14, \mathrm{P}(2)=35, \mathrm{P}(3)=72$ is given. An approximation to $\mathrm{P}(2.5)$ using all the data values is given by
(A) 61.5
(B) 53.5
(C) 56.0
(D) 51.5
d. Let $p(x)=a x^{3}+b x^{2}+c x+d$, be a third degree polynomial. Then, the forward difference $\Delta^{4} p(x)$ is given by
(A) $6 a$.
(B) 0 .
(C) $3 a$.
(D) $6 a+b$.
e. The value of the integral $\int_{1}^{4} \frac{(3 x+5)}{x} d x$ evaluated by the trapezoidal rule with $h=1$, is obtained as
(A) 16.292
(B) 18.292
(C) 15.322
(D) 16.992
f. The initial value problem $y^{\prime}=-2 t y^{2}, y(0)=1$ is given. The approximation to $y(0.4)$ obtained by the Euler method with $h=0.2$ is
(A) 1.0 .
(B) 0.62 .
(C) 0.82 .
(D) 0.92 .
g. If λ is an eigen value of A, then eigen value of A^{-1} is
(A) $1 / \lambda$
(B) $-1 / \lambda$
(C) $-\lambda$
(D) λ^{2}
h. If $f(x)=\frac{1}{x}$, then the value of $f[a, b]$ will be
(A) $\frac{1}{\mathrm{ab}}$
(B) $-\frac{1}{\mathrm{ab}}$
(C) $\frac{\mathrm{a}}{\mathrm{b}}$
(D) $-\frac{\mathrm{a}}{\mathrm{b}}$
i. For the Simpson's $\frac{1}{3}$ rd rule, the interpolating polynomial is a
(A) Straight-line
(B) Parabola
(C) Cubic curve
(D) None

$$
\mathrm{I}=\int_{-1}^{+1} \mathrm{e}^{\mathrm{x}^{2}} d x
$$

j. The value of the integral $-1 \quad$ using Gaussian integration formula for $n=2$ is
(A) $\mathrm{e}^{1 / 2}$
(B) $2 \mathrm{e}^{1 / 3}$
(C) $2 \mathrm{e}^{-1 / 3}$
(D) None

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2a. A root of the equation $x^{2}+x-2 e^{-x}=0$ is to be determined. Obtain an interval of length 1 unit, in which a positive root lies. Taking the end points of this interval as initial approximations, perform two iterations of the secant method to find approximations to the root (7)
b. Write a C program to compute x^{n} using while loop. Output x, n and x^{n}.
c. If $\Delta\left(f_{i} / g_{i}\right)=\left(a \Delta f_{i}+b \Delta g_{i}\right) /\left(g_{i} g_{i+1}\right)$, then find the values of a and b.
(3)
Q.3a. Perform four iterations of the Newton-Raphson method to find the smallest positive root of the equation

$$
\begin{equation*}
f(x)=x^{3}-5 x+1=0 \tag{8}
\end{equation*}
$$

b. Using Lagrange interpolation, find $f(2)$, from the table of values

$$
\begin{array}{ccccc}
x & 0 & 1 & 3 & 4 \\
f(x) & 1 & 4 & 34 & 73
\end{array}
$$

Q.4a. Derive the least squares straight line approximation $f(x)=a+b x$ for a data of N values $\left(x_{i}, f_{i}\right)$. Hence, obtain the least squares straight line approximation to the data

$$
\begin{array}{cccccc}
x & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
f(x) & 1.43 & 1.92 & 2.47 & 3.08 & 3.75
\end{array}
$$

Also, find the least squares error.
(8)
b. Write a C program to find a simple root of $f(x)=0$ by the regula-falsi method. Input (i) a, b (two initial approximations between which the root lies), (ii) n (maximum number of iterations) and (iii) error tolerance "eps". Output (i) approximate root, (ii) number of iterations taken. If the inputted value of n is not sufficient, the program should write "Iterations are not sufficient". Write the subprogram for $f(x)$ as $f(x)=x^{4}-x-10$.
Q.5a. The following data represents the function $f(x)=\cos (x+1)$.

$$
\begin{array}{ccccc}
x & 0.0 & 0.2 & 0.4 & 0.6 \\
f(x) & 0.540302 & 0.362358 & 0.169967 & -0.029200
\end{array}
$$

Estimate $f(0.5)$ using the Newton's backward difference interpolation. Find the magnitude of the actual error.
b. The system of equations $x^{2} y+y^{3}+x=1.0,5 x y^{2}-y^{3}=0.4$, has a solution near $x=$ $0.7, y=0.3$. Perform two iterations of the Newton's method to obtain the root.
(8)
Q.6a. Find the inverse of the coefficient matrix of the system of equations

$$
\left[\begin{array}{lll}
2 & 2 & 1 \tag{8}\\
4 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

by the Gauss-Jordan method with partial pivoting and hence solve the system.
b. The system of equations

$$
\begin{gathered}
4 x-y \quad=5 \\
-x+4 y-z=0.5 \\
-y+4 z=5
\end{gathered}
$$

is given. Using the Gauss-Seidel iteration scheme in matrix form for its solution, find whether the scheme converges. If it converges, find the rate of convergence.
Q.7a. The following data is given

x	1.0	1.5	2.0	2.5	3.0
$f(x)$	3.0	6.625	13.0	22.875	32.5
$\int f(x) d x$					

(7)

$$
\int^{b} f(x) d x
$$

b. Write a C program to evaluate $a \quad$, by trapezium rule of integration based on $n+1$ points. Input the values of n, a, b. Write $f(x)=1 /(3+5 x)$ as a function sub- program. Output all the data and the computed value.
Q. 8 a. The formula $f^{\prime}(a)=[3 f(a)-4 f(a-h)+f(a-2 h)] /(2 h), \quad$ is suitable for approximating $f^{\prime}(a)$, where a is the last value in the data. Calculate $f^{\prime}(2)$ from the table of values, using all possible step lengths.

x	1.6	1.8	1.9	1.95	2.0
$f(x)$	7.5530	8.8497	9.5859	9.9787	10.3891

b. The formula $f^{\prime}(a)=[f(a+h)-f(a-h)] /(2 h)$, is being used to compute $f^{\prime}(1)$ from a table of values. Using Taylor series, find the leading term of the error. Derive the formula for obtaining the improved (Richardson's) extrapolated value of $f^{\prime}(a)$. In a particular problem, the following results were obtained with different step lengths, using the above formula.

$$
\begin{array}{lll}
h & 0.4 & 0.2
\end{array}
$$

$$
\begin{equation*}
f^{\prime}(1) \quad 0.52601 \quad 0.53671 \tag{8}
\end{equation*}
$$

Compute the improved (Richardson's) extrapolated value of $f^{\prime}(1)$.
Q.9a. Gauss-Legendre two point integration formula can be written as

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=b f(-p)+d f(p) . \quad p \neq 0 \tag{7}
\end{equation*}
$$

Determine the values of b, d, p.
b. Using the Gauss-Laguerre two point formula, evaluate the integral $\int_{0}^{\infty} \frac{e^{-x}}{1+x} d x$.
c. Use Runge-Kutta method of fourth order to determine $y(0.2)$ with $h=0.2$, for the initial value problem $y^{\prime}=\left(y^{2}-x^{2}\right) /\left(y^{2}+x^{2}\right), y(0)=1$.

