AMIETE - ET (OLD SCHEME)

Code: AE07 Time: 3 Hours Subject: NUMERICAL ANALYSIS & COMPUTER PROGRAMMING

 \neg

Max. Marks: 100

 (2×10)

DECEMBER 2009

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The value of π is approximated by 22/7. If seven significant digits are used, the percentage relative error in this approximation is

(A)	0.4.	(B)	0.04.
(C)	2.2.	(D)	4.

b. A root of the equation $x^2 + x - \cos x = 0$ is near -1.25. Using one iteration of the Newton-Raphson method, the next approximation to the root is obtained as

(A) −1.25115.	(B) −1.29856.
(C) −1.70161.	(D) 1.26211.

c. The data P(1) = 14, P(2) = 35, P(3) = 72 is given. An approximation to P(2.5) using all the data values is given by

(A) 61.5	(B) 53.5
(C) 56.0	(D) 51.5

d. Let $p(x) = ax^3 + bx^2 + cx + d$, be a third degree polynomial. Then, the forward difference $\Delta^4 p(x)$ is given by

(A)
$$6a.$$
(B) $0.$ (C) $3a.$ (D) $6a + b.$

$$\int_{-\infty}^{4} \frac{(3x+5)}{x} dx$$

e. The value of the integral 1 k evaluated by the trapezoidal rule with h = 1, is obtained as

(A)	16.292	(B)	18.292
(C)	15.322	(D)	16.992

f. The initial value problem $y' = -2ty^2$, y(0) = 1 is given. The approximation to y(0.4) obtained by the Euler method with h = 0.2 is

(A)	1.0.	(B) 0.62.
(C)	0.82.	(D) 0.92.

g. If λ is an eigen value of A, then eigen value of A^{-1} is

	$(A) \frac{1}{\lambda}$ $(C) - \lambda$	$ \begin{array}{c} \mathbf{B} & -\frac{1}{\lambda} \\ \mathbf{D} & \lambda^2 \end{array} $
		(D) λ^2
	<u>1</u>	
h.	If $f(x) = x$, then the value of $f[a,b]$	will be
	<u> 1 </u>	
	(A) \overline{ab}	(B) ab
	<u>a</u>	<u>_</u> <u>a</u>
	(C) \overline{b}	(D) b
	<u>1</u>	
i.	For the Simpson's 3 rd rule, the interval	erpolating polynomial is a
	(A) Straight-line	(B) Parabola
	(C) Cubic curve	(D) None
	$I = \int^{+1} e^{x^2} dx$	x
j.	The value of the integral -1	using Gaussian integration formula for $n = 2$ is
	(A) $e^{1/2}$ (C) $2e^{-1/3}$	(B) $2e^{1/3}$
	$(2)^{-1/3}$	
	(\mathbf{U}) 20	(D) None

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2**a. A root of the equation $x^2 + x 2e^{-x} = 0$ is to be determined. Obtain an interval of length 1 unit, in which a positive root lies. Taking the end points of this interval as initial approximations, perform two iterations of the secant method to find approximations to the root (7)
 - b. Write a *C* program to compute x^n using while loop. Output *x*, *n* and x^n . (6)

c. If
$$\Delta(f_i / g_i) = (a\Delta f_i + b\Delta g_i) / (g_i g_{i+1})$$
, then find the values of *a* and *b*. (3)

Q.3a. Perform four iterations of the Newton-Raphson method to find the smallest positive root of the equation

$$f(x) = x^3 - 5x + 1 = 0 \tag{8}$$

(8)

b. Using Lagrange interpolation, find f(2), from the table of values $x \quad 0 \quad 1 \quad 3 \quad 4$ $f(x) \quad 1 \quad 4 \quad 34 \quad 73$ (8)

Q.4a. Derive the least squares straight line approximation f(x) = a + bx for a data of N values (x_i, f_i) . Hence, obtain the least squares straight line approximation to the data

X	0.1	0.2	0.3	0.4	0.5
f(x)	1.43	1.92	2.47	3.08	3.75

Also, find the least squares error.

b. Write a *C* program to find a simple root of f(x) = 0 by the regula-falsi method. Input (i) *a*, *b* (two initial approximations between which the root lies), (ii) *n* (maximum number of iterations) and (iii) error tolerance "eps". Output (i) approximate root, (ii) number of iterations taken. If the inputted value of *n* is not sufficient, the program should write "Iterations are not sufficient". Write the subprogram for f(x) as $f(x) = x^4 - x - 10$. (8)

Q.5a. The following data represents the function f(x) = cos(x+1). $x \quad 0.0 \quad 0.2 \quad 0.4 \quad 0.6$ $f(x) \quad 0.540302 \quad 0.362358 \quad 0.169967 \quad -0.029200$

Estimate f(0.5) using the Newton's backward difference interpolation. Find the magnitude of the actual error. (8)

- b. The system of equations $x^2y + y^3 + x = 1.0$, $5xy^2 y^3 = 0.4$, has a solution near x = 0.7, y = 0.3. Perform two iterations of the Newton's method to obtain the root. (8)
- Q.6a. Find the inverse of the coefficient matrix of the system of equations

2	2		$\begin{bmatrix} x \end{bmatrix}$		1	
4	2	3	y	=	2	
1	1	1			3	

by the Gauss-Jordan method with partial pivoting and hence solve the system. (8)

b. The system of equations

$$4x - y = 5$$
$$-x + 4y - z = 0.5$$
$$-y + 4z = 5$$

is given. Using the Gauss-Seidel iteration scheme in matrix form for its solution, find whether the scheme converges. If it converges, find the rate of convergence. (8)

Q.7a. The following data is given

$$\int_{a}^{b} f(x) dx$$

- b. Write a *C* program to evaluate a, by trapezium rule of integration based on n + 1 points. Input the values of *n*, *a*, *b*. Write f(x) = 1/(3+5x) as a function sub- program. Output all the data and the computed value. (9)
- **Q.8** a. The formula f'(a) = [3f(a) 4f(a-h) + f(a-2h)]/(2h), is suitable for approximating f'(a), where *a* is the last value in the data. Calculate f'(2) from the table of values, using all possible step lengths.

- b. The formula f'(a) = [f(a+h) f(a-h)]/(2h), is being used to compute f'(1) from a table of values. Using Taylor series, find the leading term of the error. Derive the formula for obtaining the improved (Richardson's) extrapolated value of f'(a). In a particular problem, the following results were obtained with different step lengths, using the above formula.
 - *h* 0.4 0.2

f'(1)0.52601 0.53671 Compute the improved (Richardson's) extrapolated value of f'(1). (8)

Q.9a. Gauss-Legendre two point integration formula can be written as

$$\int_{-1}^{1} f(x)dx = bf(-p) + df(p).$$

$$p \neq 0.$$
ine the values of b, d, p.
(7)

Determine the values of *b*, *d*, *p*.

- $\int_{0}^{\infty} \frac{e^{-x}}{1+x} dx.$ Using the Gauss-Laguerre two point formula, evaluate the integral b. (4)
- Use Runge-Kutta method of fourth order to determine y(0.2) with h = 0.2, for the initial с. value problem $y' = (y^2 - x^2)/(y^2 + x^2), y(0) = 1.$ (5)