DECEMBER 2008

Code: AE07

Subject: NUMERICAL ANALYSIS \& COMPUTER PROGRAMMING

Time: 3 Hours
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or best alternative in the following:

 (2x10)a. The positive root of the equation $2 x^{3}+x^{2}-7 x-20=0$ lies in the interval
(A) $(0,1)$.
(B) $(1,2)$.
(C) $(2,3)$.
(D) $(3,4)$.
b. Newton-Raphson method, when applied to find a root of the equation $f(x)=0$, has given the formula $x_{n+1}=\frac{1}{3}\left[2 x_{n}+\frac{N}{x_{n}^{2}}\right]$. If the iteration converges, then the quantity that is being determined is
(A) $\mathrm{I}^{1 / 2}$.
(B) $\mathrm{N}^{1 / 3}$.
(C) $\mathrm{N}^{1 / 4}$.
(D) $N^{1 / 5}$
c. The bound for error in linear interpolation is given by \mid Error $\left|\leq A h^{2} \max \right| f^{\prime \prime}(x) \mid, a \leq x \leq b$. The value of A is
(A) $1 / 12$.
(B) $1 / 4$.
(C) $1 / 2$.
(D) $1 / 8$.

		-1	-0.5	0
d. The following data is given	$f(x)$	2.7183	1.6487	1

differences is given by
(A) 1.6836 .
(B) 1.3832 .
(C) 1.7836 .
(D) 1.3772 .
e. The value of the integral $\int_{2}^{4} \frac{d \mathrm{x}}{\mathrm{x}^{2}+5 \mathrm{x}+1}$ evaluated by the trapezoidal rule with $h=1$, is obtained as
(A) 0.1868 .
(B) 0.0868 .
(C) 0.1736 .
(D) 0.0846 .
f. For the initial value problem $\mathrm{y}^{\prime}=2 \mathrm{x}+3 \mathrm{y}, \mathrm{y}(\mathrm{l})=2$, an approximation to $\mathrm{y}(0.1)$ by Taylor series method of second order with $h=0.1$, is
(A) 2.52.
(B) 2.73 .
(C) 2.93 .
(D) 3.03.
g. What will be the output of the following program?

```
main() {
    static int a[5] = { 1,2,3,4,5 };
    int *b,i ;
    b=a;
    for (i=0; i<5;i++ ) {
            printf("%d",*b);
            b++; }
        }
```

(A) Undefined Output.
(B) 12345 .
(C) Error.
(D) 54321 .
h. What will be the output of the following program?

```
void main() {
    int arr[ ] = {10,11,12, 13,14};
    int i, *p;
    for (p=arr, i=0; p+i<=arr+4; p++, i++)
            printf("%d", *(p+i)); }
```

(A) 1011121314
(B) 101112
(C) 1113
(D) 101214
i. What will be the output of the following programme?
enum month \{ Illegal month, Jan, Feb, March, April, May, June, July, Aug, Sep, Oct, Nov, Dec, \}; main () \{
enum month mname;
mname = Nov;
printf("\%s\n", mname);
\}
(A) Nov.
(B) Undefined Output.
(C) 11 .
(D) Error.
j. What will be the output of the following programme segment?
int $\mathrm{m}, \mathrm{n}=10$;
$\mathrm{m}=\mathrm{n}++* \mathrm{n}++;$
printf("\%d \%d \%d \%d \%d", m, n, m++, m--, --m);
(A) $100,12,100,101,99$
(B) $100,12,100,111,109$
(C) $110,12,110,111,109$
(D) $110,11,100,101,99$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. A root of the equation $\log _{10} \mathrm{x}-\mathrm{x}+3=0$ is to be determined. Obtain an interval of unit length, in which the root lies. Find this root correct to 4 decimals using the Secant method. (work with 6 places of decimals).
(8)
b. Write a C program to find a simple root of $f(\mathrm{x})=0$ by the Secant method. Input (i) a, b (two initial approximations), (ii) n (maximum number of iterations) and (iii) error tolerance "tol". Output (i) approximate root, (ii) number of iterations taken. If the inputted value of n is not sufficient, the program should write "Iterations are not sufficient". Write the subprogram for $f(x)$ as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5 \mathrm{x}+1$.
Q. 3 a. The system of equations $3 x^{2}+5 y^{2}-3 x y=12, x^{2}-3 y^{2}+5 x y=5$ has a solution near $x=1.3, \mathrm{y}=1.6$. Perform two iterations to improve the solution, using the Newton's method.
b. Find the Cholesky factorization of the matrix.

$$
\left[\begin{array}{rrrr}
9 & -6 & 0 & 0 \tag{7}\\
-6 & 13 & -6 & 0 \\
0 & -6 & 13 & -6 \\
0 & 0 & -6 & 13
\end{array}\right]
$$

Q. 4 a. Using Gauss elimination, determine whether the following system of equations has a solution. If it has, then find all the solutions.

$$
\begin{array}{ccccccccc}
4 \mathrm{x} & +y & + & \mathrm{z} & + & 3 \tag{8}\\
2 \mathrm{x} & +6 \mathrm{y} & -3 \mathrm{z} & -2 \mathrm{w} & = & 12 \\
16 \mathrm{x} & +15 \mathrm{y} & -3 \mathrm{z} & \mathrm{w} & =33 \\
2 \mathrm{x} & -5 \mathrm{y} & +4 \mathrm{z}+3 \mathrm{w} & = & -9
\end{array}
$$

b. Solve the following system of equations using the Gauss-Seidel method

$6 x_{1}+2 x_{2}+4 x_{3}+3 x_{4}$	$=7$
$2 x_{1}+9 x_{2}+2 x_{3}+6 x_{4}$	$=16$
$x_{1}+3 x_{2}-9 x_{3}+x_{4}$	$=7$
$3 x_{1}+2 x_{2}+x_{3}+6 x_{4}$	$=12$

Assume the initial solution vector as $[0.3,0.7,-0.3,1.6]^{\mathrm{T}}$ and obtain the result correct
to 2 places.
(8)
Q. 5 a. For the function $f(x)=1 /(3+5 x), 0 \leq x \leq 2$, a table of equispaced data values is to be constructed. If quadratic interpolation is proposed to be used, find the step length h such that \mid Error in quadratic interpolation $\mid<10^{-6}$.

$$
\text { b. If } \sum_{\mathrm{k}=0}^{\mathrm{n}-1} \Delta^{2} \mathrm{f}_{\mathrm{k}}=\mathrm{a} \Delta \mathrm{f}_{\mathrm{n}}+\mathrm{b} \mathrm{\Delta f}_{0} \text {, then find the values of } a \text { and } b .
$$

c. Write a C program for estimating the value of a function $f(x)$ using Lagrange interpolation with 10 data values. Input the value of x as xin and output the value of y as yout.
Q. 6 a. Construct the forward difference table for the data

x	0	0.2	0.4	0.6	0.8	1.0
$\mathrm{f}(\mathrm{x})$	-0.5	-0.476	-0.308	0.148	1.036	2.5

Hence, approximate $\mathrm{f}(0.3)$ using forward differences.
(7)
b. A given data is to be approximated by the quadratic polynomial $f(x)=a+b x+c x^{2}$. Derive the normal equations using the least squares approximation. Hence, find the least squares approximation to the data

x	-2	-1	0	1	3
$\mathrm{f}(\mathrm{x})$	8.0	5.2	2.6	4.2	24.2

Q. 7 a. The following data for the function $f(x)=x^{4}$ is given.

$$
\begin{array}{cccc}
\mathrm{x}: & 0.4 & 0.6 & 0.8 \\
\mathrm{f}(\mathrm{x}): & 0.0256 & 0.1296 & 0.4096
\end{array}
$$

Find $\mathrm{f}^{\prime}(0.8)$ and $\mathrm{f}^{\prime \prime}(0.8)$ using quadratic interpolation. Compare with the exact solution. Obtain the bound on the truncation error.
b. Find the approximate value of
$I=\int_{0}^{1} \frac{d x}{1+x}$
using trapezoidal rule. Obtain a bound for the errors.

$$
\int_{\mathrm{b}}^{\mathrm{f}} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

Q. 8 a. Write a C program to evaluate a by Simpson's rule of integration based on $2 \mathrm{n}+1$ points. Input the values of the limits a, b and n. Write $\mathbf{f}(\mathrm{x})=\mathrm{x} /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$ as a function program. Output all the data and the computed value.
$\begin{array}{lc} & I=\int_{0}^{1} \frac{d x}{1+x} \\ \begin{array}{ll}\text { b. Evaluate the integral } \\ \text { equal subintervals. }\end{array} & (\mathbf{8})\end{array}$
Q. 9 a. Find the value of the integral

$$
\begin{equation*}
I=\int_{2}^{3} \frac{\cos 2 x}{1+\sin x} d x \tag{8}
\end{equation*}
$$

using Gauss-Lagendre two and three point integration rules.
b. Given the initial value Problem

$$
u^{\prime}=-2 \operatorname{tu}^{2} \quad, u(0)=1
$$

with $\mathrm{h}=0.2$ on the interval $[0,0.4]$ use the fourth order classical Runge-Kutta Method to calculate $y(0.4)$.

