DECEMBER 2008

Code: AE07

Subject: NUMERICAL ANALYSIS & COMPUTER PROGRAMMING Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or best alternative in the following: (2x10)

a. The positive root of the equation $2x^3 + x^2 - 7x - 20 = 0$ lies in the interval (A) (0, 1). (B) (1, 2).

(11) $(0, 1)$.	$(\mathbf{D}) \ (1, \mathbf{Z}).$
(C) (2, 3).	(D) $(3, 4)$.

b. Newton-Raphson method, when applied to find a root of the equation f(x) = 0,

$$\mathbf{x}_{n+1} = \frac{1}{3} \left[2\mathbf{x}_n + \frac{\mathbf{N}}{\mathbf{x}_n^2} \right]$$

(A)
$$N^{1/2}$$
.
(B) $N^{1/3}$.
(C) $N^{1/4}$.
(D) $N^{1/5}$.

The bound for error in linear interpolation is given C. by |Error $| \leq A h^2 \max | f''(x) |$, $a \leq x \leq b$ The value of А is

(A)
$$\frac{1}{12}$$
. (B) $\frac{1}{4}$

(C)
$$\frac{1/2}{2}$$
. (D) $\frac{1/8}{2}$.

 $\begin{array}{cccc} \mathbf{x} & -1 & -0.5 & 0 \\ \text{d. The following data is given } \mathbf{f}(\mathbf{x}) & 2.7183 & 1.6487 & 1 & \text{An} \\ & & & \text{approximate value of } \mathbf{f}''(-1) & \text{using forward} \\ \end{array}$

differences is given by

(A) 1.6836.	(B) 1.3832.
(C) 1.7836.	(D) 1.3772.

e. The value of the integral $2^{\frac{1}{x^2+5x+1}}$ evaluated by the trapezoidal rule with h = 1, is obtained as

(A) 0.1868.	(B) 0.0868.
(C) 0.1736.	(D) 0.0846.

f. For the initial value problem y' = 2x + 3y, y(1) = 2, an approximation to y(0.1) by Taylor series method of second order with h = 0.1, is

(A) 2.52.	(B) 2.73.
(C) 2.93.	(D) 3.03.

g. What will be the output of the following program?

main() { static int a[5] = { 1,2,3,4,5 }; int *b,i; b = a; for (i = 0; i<5; i ++) { printf("%d",*b); b++; } } (A) Undefined Output. (B) 1 2 3 4 5. (C) Error. (D) 5 4 3 2 1.

- h. What will be the output of the following program? void main() {
 int arr[] = {10, 11, 12, 13, 14};
 int i, *p;
 for (p=arr, i=0; p+i<=arr+4; p++, i++)
 printf("%d", *(p+i));
 }
 (A) 10 11 12 13 14
 (B) 10 11 12
 (C) 11 13
 (D) 10 12 14

- i. What will be the output of the following programme? enum month { Illegal month, Jan, Feb, March, April, May, June, July, Aug, Sep, Oct, Nov, Dec, }; main () { enum month mname; mname = Nov; printf("%s\n", mname); }
 (A) Nov. (B) Undefined Output.
 (C) 11. (D) Error.

j. What will be the output of the following programme segment? int m, n=10; m = n++ * n++; printf("%d %d %d %d %d %d", m, n, m++, m--, --m);
(A) 100, 12, 100, 101, 99
(B) 100, 12, 100, 111, 109
(C) 110, 12, 110, 111, 109
(D) 110, 11, 100, 101, 99

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. A root of the equation $\log_{10} x x + 3 = 0$ is to be determined. Obtain an interval of unit length, in which the root lies. Find this root correct to 4 decimals using the Secant method. (work with 6 places of decimals). (8)
 - b. Write a C program to find a simple root of $f(\mathbf{x}) = 0$ by the Secant method. Input (i) a, b (two initial approximations), (ii) n (maximum number of iterations) and (iii) error tolerance "tol". Output (i) approximate root, (ii) number of iterations taken. If the inputted value of n is not sufficient, the program should write "Iterations are not sufficient". Write the subprogram for $f(\mathbf{x})$ as $f(\mathbf{x}) = \mathbf{x}^3 + 5\mathbf{x} + 1$. (8)
- Q.3 a. The system of equations $3x^2 + 5y^2 3xy = 12$, $x^2 3y^2 + 5xy = 5$ has a solution near x = 1.3, y = 1.6. Perform two iterations to improve the solution, using the Newton's method. (9)
 - b. Find the Cholesky factorization of the matrix.

۹	- 6	0	0
「 9 -6 0 0	13	-6	0 - 6 13
0	- 6	13	- 6
L O	0	-6	13

(7)

Q.4 a. Using Gauss elimination, determine whether the following system of equations has a solution. If it has, then find all the solutions.(8)

4x	+	У	+	Z	+	w	=	3
2 x	+	6 y	-	3z	-	2 w	=	12
16x	+	15 y	-	3z	—	w	=	33
2x	-	5y	+	4z	+	3w	=	- 9

b. Solve the following system of equations using the Gauss-Seidel method

 $3x_4$ 7 6x1 $2x_2$ $4x_3$ ++ += $+ 2x_3$ + 6x4 $2x_1$ + $9x_2$ = 16 + x₄ 9x3 = 7 3x2 ----X₁ +12 $2x_2$ 6x4 3x₁ ++x3 += Assume the initial solution vector as $[0.3, 0.7, -0.3, 1.6]^T$ and obtain the result decimal correct to 2 places. (8)

Q.5 a. For the function f(x) = 1/(3+5x), $0 \le x \le 2$, a table of equispaced data values is to be constructed. If quadratic interpolation is proposed to be used, find the step length h such that |Error in quadratic interpolat ion $| < 10^{-6}$. (7)

$$\sum_{k=0}^{n-1} \Delta^2 \mathbf{f}_k = \mathbf{a} \Delta \mathbf{f}_n + \mathbf{b} \Delta \mathbf{f}_0$$

b. If $\mathbf{k} = \mathbf{0}$, then find the values of *a* and *b*. (3)

- c. Write a C program for estimating the value of a function f(x) using Lagrange interpolation with 10 data values. Input the value of x as xin and output the value of y as yout. (6)
- a. Construct the forward difference table for the data **Q.6** 0 0.2 0.4 0.6 0.8 1.0 x f(x) - 0.5 - 0.476 -0.3080.148 1.036 2.5 Hence, approximate f(0.3) using forward differences. (7)

b. A given data is to be approximated by the quadratic polynomial $f(x) = a + bx + cx^2$. Derive the normal equations using the least squares approximation. Hence, find the least squares approximation to the data 3 X -2 -1 0 1 f(x) 8.0 5.2 2.6 4.2 24.2(3+6)

Q.7 a. The following data for the function $f(x) = x^4$ is given. x: 0.4 0.6 0.8f(x): 0.0256 0.1296 0.4096

Find f'(0.8) and f''(0.8) using quadratic interpolation. Compare with the exact solution. Obtain the bound on the truncation error. (9)

b. Find the approximate value of

$$\int_{I=0}^{I} \frac{dx}{1+x}$$

using trapezoidal rule. Obtain a bound for the errors.

(7)

Q.8 a. Write a C program to evaluate **a** by Simpson's rule of integration based on 2n+1 points. Input the values of the limits *a*, *b* and *n*. Write
$$\mathbf{f}(\mathbf{x}) = \mathbf{x}/(\mathbf{x}^2 + \mathbf{x} + 1)$$
 as a function program. Output all the data and the computed value. (8)

b. Evaluate the integral equal subintervals. $I = \int_{0}^{1} \frac{dx}{1+x}$ using Composite Simpson's rule with 2, 4 and 8 (8)

Q.9 a. Find the value of the integral

$$I = \int_{2}^{3} \frac{\cos 2x}{1 + \sin x} \, dx.$$

using Gauss-Lagendre two and three point integration rules.

(8)

b. Given the initial value Problem

$$u' = -2tu^2$$
, $u(0) = 1$

with h=0.2 on the interval [0, 0.4] use the fourth order classical Runge-Kutta Method to calculate y(0.4). (8)