Code: AE07
Subject: NUMERICAL ANALYSIS \& COMPUTER PROGRAMMING
Time: 3 Hours
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following:
a. The divided difference $f\left[x_{i}, x_{i+1}\right]$ is equal to (if $x_{i+1}-x_{i}=h$)
(A) $\Delta f_{i+1} / h$.
(B)
$\nabla f_{i+1} / \mathrm{h}$.
(C) $\nabla \mathrm{f}_{\mathrm{i}+1} / \mathrm{h}^{2}$.
(D) $\nabla^{2} \mathrm{f}_{\mathrm{i}+1} / \mathrm{h}^{2}$.
b. An approximation to $f^{\prime}\left(x_{k}\right)$ is written as

$$
f^{\prime}\left(x_{k}\right)=\left[a f\left(x_{k+1}\right)+b f\left(x_{k}\right)+c f\left(x_{k-1}\right)\right] /(2 h) .
$$

Then, the values of the coefficients (a, b, c) are
(A) $(1,0,1)$.
(B) $(1,-2,1)$.
(C) $(-3,4,1)$.
(D) $(1,0$,
-1).

$$
\int_{a}^{b} f(x) d x \text { is bounded by }
$$

c. Error in composite Simpson's rule for integrating ${ }^{\mathbf{a}}$ is bounded by

$$
M(b-a) h^{4} \max \left|f^{(4)}(x)\right| \text {. The value of } M \text { is }
$$

(A) $1 / 180$.
(B) $1 / 90$.
(C) $1 / 2880$.
(D) $1 / 160$.
d. Newton-Raphson method for computing $35^{1 / 5}$ can be written as

$$
\mathrm{x}_{\mathrm{in}+1}=g\left(\mathrm{x}_{\mathrm{H}}\right) \text {, where } g\left(\mathrm{x}_{\mathrm{n}}\right)=
$$

(A) $\mathrm{x}_{\mathrm{n}}^{5}-35$
(B) $\left(4 x_{n}^{5}+35\right) /\left(5 x_{n}^{4}\right)$.
(C) $\left(5 \mathrm{x}_{\mathrm{n}}^{4}+35\right) /\left(5 \mathrm{x}_{\mathrm{n}}^{4}\right)$.
(D) $\left(4 \mathrm{x}_{\mathrm{n}}^{5}-35\right) /\left(5 \mathrm{x}_{\mathrm{n}}^{4}\right)$.
e. The Runge-Kutta method $y_{n+1}=y_{n}+(h / 2)\left[f\left(x_{n n}, y_{n}\right)+f\left(x_{n+1}, y_{n}+h f_{n}\right)\right]$, when applied to the initial value problem $\mathrm{y}^{\prime}=\mathrm{ay}, \mathrm{y}(0)=1$, gives $\mathrm{y}_{\mathrm{n}+1}=\mathrm{E}_{\mathrm{y}_{\mathrm{n}}}$. Then, E is equal to
(A) $1+a h$.
(B) $1+a h+a^{2} h^{2}$.
(C) $1+a h+\left(a^{2} h^{2}\right) / 2$.
(D) $1+a h+2 a^{2} h^{2}$.
f. The linear least squares polynomial approximation to the following data

x	0	1	2	3
$f(x)$	1	2	5	10

(A) 0 .
(B) 1.5.
(C) 4.0.
(D) 5.2.
g. What will be the output of the following program?

```
void main() {
        int arr[ ] = {10,11,12,13,14};
        int i, *p;
        for (p=arr, i=0; p+i<=arr+4; p++, i++)
            printf("%d", *(p+i)); }
```

(A) 1011121314
(B) 101112
(C) 1113
(D) 101214
h. What will be the output of the following program?

```
#include <stdio.h>
    main(argc,argv)
    int argc;
    char *argv[];
    {
        int i;
        for (i = 1;i<argc;i++);
        printf("%s",argv[i]);
        prinft("\n");
    }
```

 if the following command in typed,
 \$ myecho hello world
 (B) myecho hello.
(B) no output is produced.
(C) myecho world.
(D) hello world.
i. What will be the output of the following program?
main()

```
{ static int a [5] = { 1,2,3,4,5 };
    int i ;
    for (i = 0; i<5; i ++ )
    { printf("%d",*a);
        a=a+1;
    }
}
```

(A) 12345 .
(B) Error
(C) Undefined Output
(D) 54321
j. What will be the output of the following programme segment?
int $\mathrm{m}, \mathrm{n}=10$;
$\mathrm{m}=\mathrm{n}++* \mathrm{n}++;$
printf("\%d, \%d, \%d, \%d, \%d", m, n, m++, m--, --m);
(A) $100,12,100,101,99$
(B) $100,12,100,111,109$
(C) $110,12,110,111,109$
(D) $110,11,100,101,99$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Find an interval of unit length which contains the smallest negative root in magnitude of the equation $2 x^{3}+3 x^{2}+2 x+5=0$. Using the end points of this interval as initial approximations, obtain the root correct to three decimals using the Regula-Falsi method.
b. It is known that the iterative method

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{1}{8} \mathrm{x}_{\mathrm{n}}\left(6+\frac{3 \mathrm{a}}{\mathrm{x}_{\mathrm{n}}^{2}}-\frac{\mathrm{x}_{\mathrm{n}}^{2}}{\mathrm{a}}\right)_{\text {converges to }}
$$ $\sqrt{\mathrm{a}}$. Find the order of the method and the leading term of the error.

Q. 3 a. Set up the Gauss-Seidel iteration scheme in matrix form to solve the system of

b. Solve the system of equations $2 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}=2.3$ by Gauss elimination method.
Q. 4 a. Find the Choleski decomposition of the matrix $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$. Hence find its inverse.
(10)
b. The nonlinear system of equations $x^{2}+y^{2}-x y=0.1,3 x^{2}-y^{2}+5 x y=0.13$ has a solution near $x=0.1, y=0.3$. Perform one iteration of the Newton's method to improve the solution.
Q. 5 a. Write a C program for finding a simple root of $f(x)=0 \quad$ using Regula - Falsi method. Input the end points of the interval (a, b) in which the root lies, maximum number of iterations n and the error bound 'bound'. If the given number of iterations n, is not sufficient, the program should display "Iterations are not sufficient". Write the function subprogram using $f(x)=x /\left(x^{3}+1\right)$.
(7)
b. If $\Delta\left(\frac{f_{i}}{g_{i}}\right)=a \Delta f_{i}+b \Delta g_{i}$, and Δ is the forward difference operator, then find the expressions for a and b.
c. A table of values for the function $f(x)=(1+x)^{4}$ in $[0,3]$ is to be constructed at equispaced points. If we want to use linear interpolation in this table, then find the largest step length h that can be used to construct the table, if error of interpolation is to be $\leq 1 \times 10^{-4}$.
Q. 6 a. Construct the interpolating polynomial that fits the data

x	0	1	3	6	10
$\mathrm{f}(\mathrm{x})$	-3	-1	27	219	1007

b. Use the method of least squares to fit the curve $y=a+b x+c x^{2}$, to the table of values

x	1	2	3	4	5
$\mathrm{y}(\mathrm{x})$	2.5	4.5	3.7	5.0	4.2

$$
\begin{equation*}
\int^{b} f(x) d x \tag{8}
\end{equation*}
$$

Q. 7 a. Write a C program to evaluate the integral a by Simpson's rule with $2 N+1$ nodal points. Write a function subprogram using $f(x)=e^{-x} /\left(1+x^{2}\right)$
b. Compute an approximation to $f^{\prime}(2)$ using the formula
$f^{\prime}(x)=[3 f(x)-4 f(x-h)+f(x-2 h)] /(2 h)$, and possible values of h from the $\begin{array}{llllll}\mathrm{x} & 1.2 & 1.6 & 1.8 & 1.9 & 2\end{array}$
$\begin{array}{lllllll}\text { data } & f(x) & 2.5012 & 2.8019 & 2.9653 & 3.0496 & 3.1353\end{array}$
(7)

$$
\int_{2}^{3} \frac{\cos 2 x}{1+\sin x} d x
$$

Q. 8 a. Evaluate the integral ${ }_{2} 1+\sin x$ where x is in radians, using Simpson's rule with $3,5,9$ points. Improve the approximation to the value of the integral using Romberg integration. (7+3)
b. Derive the two point Gauss-Hermite formula

$$
\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{af}\left(-\frac{1}{\sqrt{2}}\right)+\mathrm{bf}\left(\frac{1}{\sqrt{2}}\right) . \quad\left[\text { It is given that } \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\sqrt{\pi}\right]
$$

(6)
Q. 9 a. Use Euler's method to compute an approximation to $\mathrm{y}(1.2)$ for the initial value problem $y^{\prime}=\frac{x-y}{x+y}, y(1)=2, h=0.05$
b. A Runge-Kutta method of second order, for solving the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ is given by
$y_{n+1}=y_{n}+k_{2}, k_{1}=h f\left(x_{n}, y_{n}\right), k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{1}{2} k_{1}\right)$
(i) Find the truncation error of the method.
(ii) Using the above method, obtain an approximation to $\mathrm{y}(1.1)$ for the initial value problem $y^{\prime}=2 x^{2}+3 y^{2}, y(1)=0.5$ with $h=0.1$. (6+5)

