## AMIETE - ET (OLD SCHEME)

Code: AE07
Time: 3 Hours

Subject: NUMERICAL ANALYSIS \& COMPUTER PROGRAMMING
Max. Marks: 100

## JUNE 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If we take $\mathrm{x}=0.178693 \times 10^{1}, \mathrm{y}=0.178439 \times 10^{1}$ each correct to six digits in decimal system then the value of $x-y=0.000254 \times 10^{1}$ is correct to
(A) 3 digits
(B) 4 digits
(C) 5 digits
(D) 6 digits
b. Identify the number of True statements among the following:
(i) An iterative method is said to be of order $p$,
if there exists a non-zero constant $C$ and $p$ is the largest positive real number such that

$$
\left|\varepsilon_{k+1}\right| \leq C\left|\varepsilon_{k}\right|^{p}
$$

is satisfied where $\varepsilon_{k}$ is the error at the $k$-th iteration
(ii) The rate of convergence of Secant method is $p=1$
(iii) The Regula-Falsi method has linear rate of convergence
(A) 1
(B) 2
(C) 3
(D) None of the above
c. Suppose the coefficient matrix A of a given system of equations is decomposed in to $\mathrm{A}=\mathrm{LU}$
where L and U are the lower and upper triangular matrices respectively. If we choose the diagonal elements of $L$ to be equal to the value 1 then the method is called
(A) Gauss-Jordan method
(B) Doolittle's method
(C) Crout's method
(D) None of the above
d. For the following values given

| $x($ in degrees $)$ | 10 | 20 | 30 |
| :--- | :--- | :--- | :--- |
| $f(x)$ | 1.1585 | 1.2817 | 1.3660 | using quadratic interpolating polynomial $f($.) that fits the data, find $f(\pi / 12)$ ?

(A) 1.0729
(B) 1.1925
(C) 1.2246
(D) None of the above
e. The following table of values is given:

| $x$ | -1 | 1 | 2 | 3 | 4 | 5 | 7 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1 | 1 | 16 | 81 | 256 | 625 | 2401 |

Using the formula $\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=\left(\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right) /(2 \mathrm{~h})\right.$ and the Richardson extrapolation, find ${ }^{f}$ '(3)?
(A) 108
(B) 115
(C) 127
(D) None of the above
f. Identify the correct statements from the following
(i) The problem of Least Squares approximation is a minimization problem
(ii) The Legendre polynomials $P_{n}(x)$ defined on [-1,1] are orthogonal polynomials
(iii) The Chebyshev polynomials $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$ are defined on $[-1,1]$ by,

$$
T_{n}(x)=\cos ^{-1}(n \cos x)
$$

(A) (i) \& (ii)
(B) (i) \& (iii)
(C) (ii) \& (iii)
(D) (i), (ii) \& (iii)
g. Simpson's three-eighth rule of numerical integration is exact for polynomials of degree up to
(A) 1
(B) 2
(C) 3
(D) any finite degree
h. The value of the integral

$$
I=\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} \cos x d x
$$

using 1-point Gauss-Chebyshev formula will be
(A) 2.1276
(B) 2.5672
(C) 2.9831
(D) None of the above
i. The order of convergence of Newton-Raphson method is
(A) 1
(B) 2
(C) 3
(D) 4
j. The value of y corresponding to $\mathrm{x}=0.1$ for the differential equation $\frac{d y}{d x}=x+y ; y(0)=1$.
Using Euler's method.
(A) 1.10
(B) 1.36
(C) 1.94
(D) 2.19

## Answer any FIVE Questions out of EIGHT Questions. <br> Each question carries 16 marks.

Q. 2 a. Show that the Newton-Raphson method for finding the root of the equation $f(x)=0$ has second order convergence. (8)
b. Write a C program to find a simple root of the equation of $f(x)=0$ by the RegulaFalsi method. The inputs are : (i) $x 0, x 1$ (the initial interval in which the root lies), (ii) maximum number of iterations, (iii) the error tolerance 'tol'. The outputs are: (i) approximate root (ii) number of iterations taken. If the input value of ' $n$ ' is not sufficient then your program should give an error message: "Iterations not sufficient". Also write a function to evaluate $f(x)$ where $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}+1$.
(8)
Q. 3 a. Obtain a second degree polynomial approximation to
$f(x)=(1+x)^{1 / 2}, x \in[0,0.1]$
using the Taylor series expansion about $x=0$. Use the expansion to approximate $f(0.05)$ and find a bound of the truncation error
b. Perform three iterations of the Newton-Raphson method to solve the system of equations

$$
\begin{align*}
& x^{2}+x y+y^{2}=7 \\
& x^{3}+y^{3}=9 \tag{8}
\end{align*}
$$

by taking the initial approximation as $\mathrm{x}_{0}=1.5, \mathrm{y}_{0}=0.5$.
Q. 4 a. Solve the following system of equations using Gauss elimination with partial pivoting
$2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=6$
$4 x_{1}+2 x_{2}+3 x_{3}=4$
$x_{1}+x_{2}+x_{3}=0$
b. Using the Gauss-Seidel method, solve the system of equations
$20 x_{1}+2 x_{2}+6 x_{3}=28$
$x_{1}+20 x_{2}+9 x_{3}=-23$
$2 x_{1}-7 x_{2}-20 x_{3}=-57$
starting from $(0,0,0)$ up to 5 iterations.
Q. 5 a. Differentiate the following:
(i) Call by values and Call by reference in C program
(ii) Structures \& Unions
b. A polynomial fits the points $(1,4),(3,7),(4,8)$ and $(6,11)$. Using Newton's divided difference formula interpolate the value of $y$ at $x=2$.
Q. 6 a. Find the least-squares approximation of second degree for the discrete data

| x | -2 | -1 | 0 | 1 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(\mathrm{x})$ | 15 | 1 |  |  | 1 |  |

b. Determine the step size that can be used in the tabulation of $f(x)=\sin x$ in the interval $\left[0, \frac{\pi}{4}\right]$ at equally spaced nodal points so that the truncation error of the quadratic interpolation is less than $5 \times 10^{-8}$.
Q. 7 a. A differentiation rule of the form
$h f^{\prime}\left(x_{2}\right)=\alpha_{0} f\left(x_{0}\right)+\alpha_{1} f\left(x_{1}\right)+\alpha_{2} f\left(x_{3}\right)+\alpha_{3} f\left(x_{4}\right)$
where $x_{j}=x_{0}+j h, j=0,1,2,3,4$ is given.
(i) Determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and $\alpha_{3}$ so that the rule is exact for a polynomial of degree 4.
(ii) Find the error term.
(iii) Calculate $f^{\prime}(0.3)$ using five places of $f(x)=\sin x$ with $h=0.1$.
b. Construct the divided difference table for the data:
$(0.5,1.625),(1.5,5.875),(3.0,31.0),(5.0,131.0)(6.5,282.125),(8.0,521.0)$
Q. 8 a. By applying composite Simpson's rule with 4 equal sub-intervals, compute the integral

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} d x \tag{6}
\end{equation*}
$$

b. Evaluate the integral
$I=\int_{1}^{2} \frac{2 x}{1+x^{4}} d x$
using Gauss-Legendre 2-point and 3-point quadrature rules
Q. 9 a. Find the Cholesky decomposition of the following matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 8 & 22 \\
3 & 22 & 82
\end{array}\right]
$$

b. For the given initial value problem

$$
y^{\prime}(x)=x^{2}+y^{2}, \quad y(0)=0
$$

with $\mathrm{h}=0.2$, estimate $\mathrm{y}(0.4)$ using the fourth order classical Runge-Kutta method.

