AMIETE - ET (OLD SCHEME)

Code: AE07Subject: NUMERICAL ANALYSIS & COMPUTER PROGRAMMINGTime: 3 HoursMax. Marks: 100

JUNE 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. If we take $x = 0.178693 \times 10^1$, $y = 0.178439 \times 10^1$ each correct to six digits in

decimal system then the value of $x - y = 0.000254 \times 10^{1}$ is correct to

(A) 3 digits	(B) 4 digits
(C) 5 digits	(D) 6 digits

b. Identify the number of True statements among the following:

if there exists a non-zero number such that (i) An iterative method is said to be of order *p*, constant *C* and *p* is the largest positive real

 $|\mathcal{E}_{k+1}| \leq C |\mathcal{E}_k|^p$

is satisfied where \mathcal{E}_k is the error at the *k*-th iteration

- (ii) The rate of convergence of Secant method is p=1
- (iii) The Regula-Falsi method has linear rate of convergence
- (A) 1
 (B) 2
 (C) 3
 (D) None of the above
- c. Suppose the coefficient matrix A of a given system of equations is decomposed in to A=LU

where L and U are the lower and upper triangular matrices respectively. If we choose the diagonal elements of L to be equal to the value 1 then the method is called

(A) Gauss-Jordan method	(B) Doolittle's method
(C) Crout's method	(D) None of the above

d. For the following values given

	<i>x</i> (ir	n degrees	s)	1	0	2	0	30
	f(x)				1585		.2817	1.3660
	usin	g quadra	tic int	erpolati	ing poly	momial	f(.) that	t fits the data, find $f(\pi/12)$?
	(A)	1.0729				(B)	1.1925	
	(C)	1.2246				(D)	None of	of the above
e.	The	followin	g table	e of val	ues is gi	ven:		
	x	-1	1	2	3	4	5	7
	f(x)	1	1	16	81	256	625	2401
	Usin	g the for	mula	$f'(x_1)$	$=(f(x_2))$	$)-f(x_0)$)/(2h)	and the Richardson extrapolation,
		f'(3)?						
	(A)					(B)		
	(C)	127				(D)]	None of	of the above
f.	Iden (i)	tify the c The pro						g on is a minimization problem
	(ii)	The Leg		polync	omials ¹	$P_n(x)$ def	fined or	n [-1,1] are orthogonal
						\mathbf{T}		
	(iii)		•			$I_n(x)$	are defi	ined on [-1,1] by,
		$T_n(x)$	$=\cos^{2}$	$^{-1}(n \cos \theta)$	sx)			
	(A)	(i) & (ii))			(B) (i	i) & (iii	i)

g. Simpson's three-eighth rule of numerical integration is exact for polynomials of degree up to

(D) (i), (ii) & (iii)

(A) 1	(B) 2
(C) 3	(D) any finite degree

h. The value of the integral

(**C**) (ii) & (iii)

$$I = \int_{-1}^{1} (1 - x^2)^{3/2} \cos x dx$$

using 1-point Gauss-Chebyshev formula will be

(A) 2.1276
(B) 2.5672
(C) 2.9831
(D) None of the above

i. The order of convergence of Newton-Raphson method is

(A) 1	(B) 2
(C) 3	(D) 4

j. The value of y corresponding to x=0.1 for the differential equation $\frac{dy}{dx} = x + y; y(0) = 1.$

Using Euler's method.

(A) 1.10	(B) 1.36
(C) 1.94	(D) 2.19

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Show that the Newton-Raphson method for finding the root of the equation f(x)=0 has second order convergence. (8)
 - b. Write a C program to find a simple root of the equation of f(x)=0 by the Regula-Falsi method. The inputs are : (i) x0, x1 (the initial interval in which the root lies), (ii) maximum number of iterations, (iii) the error tolerance 'tol'. The outputs are: (i) approximate root (ii) number of iterations taken. If the input value of 'n' is not sufficient then your program should give an error message: "Iterations not sufficient". Also write a function to evaluate f(x) where $f(x) = x^3 - 5x + 1$. (8)
- Q.3 a. Obtain a second degree polynomial approximation to $f(x) = (1+x)^{\frac{1}{2}}, x \in [0,0.1]$ using the Taylor series expansion about x=0. Use the expansion to approximate f(0.05) and find a bound of the truncation error (8)
 - b. Perform three iterations of the Newton-Raphson method to solve the system of equations

$$x2 + xy + y2 = 7$$
$$x3 + y3 = 9$$

by taking the initial approximation as $x_0 = 1.5, y_0 = 0.5$. (8)

Q.4 a. Solve the following system of equations using Gauss elimination with partial

pivoting

(8)

 $2x_1 + 2x_2 + x_3 = 6$ $4x_1 + 2x_2 + 3x_3 = 4$ $x_1 + x_2 + x_3 = 0$

- b. Using the Gauss-Seidel method, solve the system of equations $20x_1 + 2x_2 + 6x_3 = 28$ $x_1 + 20x_2 + 9x_3 = -23$ $2x_1 - 7x_2 - 20x_3 = -57$ starting from (0,0,0) up to 5 iterations.
- Q.5 a. Differentiate the following:(i) Call by values and Call by reference in C program

- (ii) Structures & Unions
- b. A polynomial fits the points (1,4), (3,7), (4,8) and (6,11). Using Newton's divided difference formula interpolate the value of y at x=2. (8)
- Q.6 a. Find the least-squares approximation of second degree for the discrete data $x \quad -2 \quad -1 \quad 0 \quad 1 \quad 2$ $f(x) \quad 15 \quad 1 \quad 1 \quad 3$ 19
 - (8)
 - b. Determine the step size that can be used in the tabulation of $f(x)=\sin x$ in the interval $\begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$ at equally spaced nodal points so that the truncation error of the quadratic interpolation is less than 5×10^{-8} . (8)
- **Q.7** a. A differentiation rule of the form $hf'(x_2) = \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_3) + \alpha_3 f(x_4)$ where $x_j = x_0 + jh, j = 0, 1, 2, 3, 4$ is given.
 - (i) Determine the values of $\alpha_0, \alpha_1, \alpha_2$ and α_3 so that the rule is exact for a polynomial of degree 4.
 - (ii) Find the error term.
 - (iii) Calculate f'(0.3) using five places of $f(x) = \sin x$ with h = 0.1. (4+3+3)
 - b. Construct the divided difference table for the data: (0.5, 1.625), (1.5, 5.875), (3.0, 31.0), (5.0, 131.0) (6.5, 282.125), (8.0, 521.0) (6)
- **Q.8** a. By applying composite Simpson's rule with 4 equal sub-intervals, compute the integral

$$I = \int_0^{\frac{\pi}{2}} \sqrt{\sin x} dx \tag{6}$$

b. Evaluate the integral

$$I = \int_{1}^{2} \frac{2x}{1+x^4} dx$$
using Gauss Lagrandra 2 point and 3 point quadrature rules (515)

using Gauss-Legendre 2-point and 3-point quadrature rules (5+5)

Q.9 a. Find the Cholesky decomposition of the following matrix

[1	2	3
2	8	22
3	22	82

b. For the given initial value problem $y'(x) = x^2 + y^2$, y(0) = 0

with h=0.2, estimate y(0.4) using the fourth order classical Runge-Kutta method.

(8)