CHEMISTRY ## (Inorganic Section) - 1. Which of the following statements is incorrect? - (A) The ground state of an atom will be the one having the greatest spin multiplicity - (B) The product of the uncertainty in the energy of an excited state and the lifetime of an excited state is greater than $h/2\pi$ - (C) The number of nodal surfaces passing through the nucleus is equal to the value of n, the principal quantum number - (D) A radial distribution function (P), gives the probability that an electron will be found at a given distance from the nucleus regardless of the direction and is equal to $4\pi r^2 \psi^2$. - As a result of the combined effects of penetration and shielding, the order of energy levels in an electron atom is: - (A) ns < np < nd < nf - (B) nf < nd < np < ns - (Q) ns < nd < np < nf - (D) ns < np < nf < nd - 3. Using a Boron Haber cycle, and the given data, determine which of the following is the correct value of the lattice enthalpy Δ HL of KCl (s): ## Data : $$\Delta \mathring{\mathbf{H}}$$ (sublimation of K(s)) = +89 kJ mol⁻¹, $\Delta \mathring{\mathbf{H}}$ (ionisation of K(g)) = +425 kJ mol⁻¹, $\Delta \mathring{\mathbf{H}}$ (dissociation of $\mathrm{Cl}_2(\mathbf{g})$) = +244, $\Delta \mathring{\mathbf{H}}$ (electron gain by $\mathrm{Cl}(\mathbf{g})$) = -355, $\Delta \mathring{\mathbf{H}}$ (formation of KCl(s)) = -438 - (A) 310 kJ mol-1 - (B) 524 kJ mol-1 - (C) 719 kJ mol-1 - (D) 905 kJ mol⁻¹ - Bond order of NO and NO+ are respectively : - (A) 2.5 and 3 - (B) 2 and 4 - (O) 3.5 and 2.5 - (D) 3 and 2 - The configuration of superoxide ion O₂ is : - (A) \sqrt{g}^2 , $1\sqrt{4}^2$, $2\sqrt{g}^2$, $1\pi_4^4$, $1\pi_g^2$ - (B) $1\sqrt{g}^2, 1\sqrt{4}^2, 2\sqrt{g}^2, 1\pi_4^4, 1\pi_g^3$ - (C) $1\sqrt{g}^2$, $1\sqrt{4}^2$, $2\sqrt{g}^2$, $1\pi_4^4$, $1\pi_g^4$ - (D) None of the above - 6. The standard reduction potential of Cu²⁺, Zn²⁺, Sn²⁺ and Ag⁺ are 0.34, -0.76, -0.14 and 0.80 V respectively, the storage that is possible without any reaction is for: - (A) CuSO₄ solution in a zinc vessel - (B) AgNO₃ solution in a zinc vessel - (2) AgNO₃ solution in a tin vessel - (D) CuSO₄ solution in a silver vessel - 7. Consider various species generated when H₃PO₄ is dissolved in water. Among these, the conjugate acid of HPO₄²⁻ is: - (A) H₃PO₄ - (B) H₂PO₄ - (C) PO₄³- - (D) H₃O+ | 8. | The
the | reaction of XeF_4 with the Lewis base F ⁻ in cyanomethane solution produces XeF_5^- ion which has : | | | | |-----|--|--|--|--|--| | | square pyramidal shape | | | | | | | (B) | planar-pentagonal shape | | | | | | (C) | trigonal bipyramidal shape | | | | | | (D) | distorted octahedral shape | | | | | 9. | The diagonal relationship of elements in the periodic table arises becaus similarity in : | | | | | | | (A) | ionic radius | | | | | | (B) | electronic configuration | | | | | | (C) | crystal structure | | | | | | (D) | charge/radius ratio of the corresponding ion | | | | | 10. | According to Wade's rules boron hydrides of formula $\mathbf{B}_n\mathbf{H}_{n+4}$ and $n+2$ pairs of skeletal electron have : | | | | | | | (A) | Closo structure | | | | | | (B) | Nido structure | | | | | | | | | | | | | (C) | Arachno structure | | | | | | (C)
(D) | Arachno structure Hypho structure | | | | | 11. | (D) | The state of s | | | | | 11. | (D) | Hypho structure | | | | | 11. | (D)
Whice | Hypho structure h pseudo-halogen does not have dimeric nature ? | | | | | 11. | (D)
Whice
(A) | Hypho structure th pseudo-halogen does <i>not</i> have dimeric nature? cyanogen | | | | | 11. | (D) Whice (A) (B) | Hypho structure the pseudo-halogen does not have dimeric nature? cyanogen azide | | | | - 12. Identify the incorrect statement : - (A) The largest change in stability of highest oxidation state of an element on descending a group occurs between 3d and 4d series of the d-block elements - (B) The 4d and 5d elements often have higher coordination numbers than their 3d congeners - (C) The conversion of an aquoligand to an oxoligand is favoured by a high pH and by a high oxidation state of the central metal atom - (D) Oxidation state +2 is more common for the 3d metal from the middle to the left of the block - 13. The theory which utilises pure electrostatic bonding between metal and ligand is: - (A) valence bond theory - (B) molecular orbital theory - (C) crystal field theory - (D) ligand field theory - 14. The theoretical value of the magnetic moment of [Fe(H₂O)₆]³⁺ at 273 K is: - (A) 2.83 B.M. - (B) 3.87 B.M. - (C) 4.90 B.M. - (D) 5.92 B.M. - 15. Eriochrome Black T is used as indicator in the quantitative estimation of Mg with EDTA titration. The pH of the solution should be maintained at: - (A) pH 3 - (B) pH 6.7 - (C) pH 10 - (D) pH 01 16. Consider the following cyanide exchange reactions: $$[\text{Ni}(\text{CN})_4^{2-}] + 4^{14}\text{CN}^- \rightarrow [\text{Ni}(^{14}\text{CN})_4]^{2-} + 4\text{CN}^-, t_{1/2} \approx 30 \text{ s}$$ $$[Mn(CN)_6]^{3-} + 6^{14}CN^- \rightarrow [Mn(^{14}CN)_6]^{3-} + 6CN^-, t_{1/2} \approx 1 \text{ h}$$ $$[Cr(CN)_6]^{3-} + 6^{14}CN^- \rightarrow [Cr(^{14}CN)_6]^{3-} + 6CN^-, t_{1/2} \approx 24 \text{ days}$$ All the above three cyanide complexes are thermodynamically stable but not equally inert, which one is the most labile : - (A) $[Ni(CN)_4]^{2-}$ - (B) $[Mn(CN)_6]^{3-}$ - (C) $[Cr(CN)_6]^{3-}$ - (D) None of the above 17. The methods of separation of lanthanides include: - (A) fractional crystallisation, ion exchange and solvent extraction - (B) only ion exchange and solvent extraction - (C) solvent extraction only - (D) fractional crystallisation 18. Haemoglobin, Haemocyanin and Cytochromes are : - (A) storage metalloproteins - (B) transport metalloproteins - (C) enzymes - (D) none of the above | 19. | Transport of oxygen is an important function of blood | . Partial pressure of | |-----|--|-----------------------| | | oxygen is the highest and the lowest in: | 86 | | | VAN PROPERTY OF THE O | | - (A) Muscles and Heart - (B) Lungs and Muscles - (C) Heart and Lungs - (D) Muscles and Lungs 20. Gadolinium (¹⁵³Gd) which has a half-life of 242 days, is used to detect osteoporosis. The percentage of ¹⁵³Gd left in a patient's system after 2 years will be: - (A) 33.0 - (B) 25.0 - (C) 12.5 - (D) 6.25 ## (Organic Section) 21. Give the correct order of strength of the following carboxylic acids: - (i) CH₃CH₂COOH, (ii) (CH₃)₂CHCOOH - (iii) Cl-CH₂.COOH (iv) Br-CH₂COOH - (A) (i) > (ii) > (iii) > (iv) - (B) (iii) > (iv) > (i) > (ii) - (C) (iv) > (iii) > (ii) > (i) - (D) (ii) > (i) > (iv) > (iii) 22. Which of the following is a wrong statement? - (A) Inductive effect is a permanent effect and involves π electrons - (B) A singlet carbene being paramagnetic, can be detected by ESR - (C) Due to presence of lone pair of electrons on nitrogen, nitrenes act as Lewis bases - (D) All the statements are wrong 23. Stereoisomers that are not mirror images of each other are called as : - (A) Anomers - (B) Enantiomers - (C) Diastereoisomers - (D) Epimers 24. The relationship that exist between the following compounds is that of: - (A) Enantiomers - (B) Same compound - (C) Conformational isomers - (D) Position isomers .25. Hydroxylation of alkenes, with alk. KMnO₄ and OsO₄ produce : - (A) Syn 1, 2 diols - (B) Syn 1, 3, diols - (C) Anti 1, 2, diols - (D) Anti 1, 3, diols 26. Order of stability of cyclopropene(1), salt of cyclopropenyl cation(2), and salt of cyclopropenyl anion(3) is: - (A) 1 > 2 > 3 - (B) 1 > 3 > 2 - (C) 2 > 1 > 3 - (D) 2 > 3 > 1 - 27. Rate of S_N¹ reaction of alkyl halides does not depend on : - (A) Structure of alkyl halide - (B) Nature of leaving group - (C) Polarity of solvent - (D) Strength of nucleophile - 28. For the reaction: Phenol + CCl₄ $$\frac{(i) \text{ NaOH, } \Delta}{(ii) \text{ H}_3\text{O}^+}$$ 'A', the main product 'A' will be : - (A) salicyldehyde - (B) p-hydroxybenzaldehyde - (C) salicyclic acid - (D) m-hydroxybenzoic acid - 29. The reaction between an aldehyde or a ketone with a phosphorous ylide to give a substituted alkene is called as: - (A) Mannich reaction - (B) Wittig reaction - (C) Perkin reaction - (D) Cannizzaro's reaction - 30. When benzaldehyde is heated with an ethanolic solution of KCN, the product obtained is: - (A) Benzoic acid - (B) Benzoin - (C) Benzil - (D) Benzamide - 31. Which of the following carboxylic acids does not have any stereocentre? - (A) Malic acid - (B) Tartaric acid - (C) Oxalic acid - (D) Citric acid Chem. | 32. | (A) | rbylamine or Isocyanide test is used to distinguish: | |-------------|---------------------|--| | | 24.30(5) | and anines | | | (B) | 2° amine from 1° and 3° amines | | | (C) | and the state of t | | ۵۵ | (D) | Aromatic amines from aliphatic amines | | 33. | | ler of basicity of the following is : | | | (A) | - permite - Tyriole | | | (B) | Piperidine > Pyridine > Pyrrole | | | (C) | Pyrrole > Pyridine > Piperidine | | | (D) | None of the above | | 34. | Whi
abso | ch of the following absorptions in the IR region represent carbonyl group orption of amides? | | | (A) | 1685 cm ⁻¹ | | | (B) | 1725 cm ⁻¹ | | | (C) | 1760 cm ⁻¹ | | | (D) | 1700 cm ⁻¹ | | 35. | A co
spec
is: | mpound shows ¹ HNMR peak at 270 Hz downfield from TMS peak in a trometer operating at 60 MHz. The value of chemical shift δ in PPM | | | (A) | 2.7 | | | (B) | 6.0 | | | (C) | 4.5 | | | (D) | 5.7 | | 36 . | Viny
of th | lic protons which are trans to each other have a coupling constant (J) e order of : | | | (A) | 0-2 Hz | | | (B) | 2-5 Hz | | | (C) | 6-14 Hz | | 200200 | (D) | 11-18 Hz | | Chem. | | 9 P.T.O. | | | | | Sulphur containing amino acid is : 37. (A) Histidine (B) Methionine (C) Serine (D) Proline Which of the following nitrogenous bases is 6-aminopurine? 38. Guanine (B) Uracil (C) Thymine (D) Adenine Which of the following is a disaccharide of D-glucose and D-fructose? 39. Maltose (A) (B) Lactose (C) Sucrose (D) Amylose Choose the wrong statement: 40. For basic amino acids, the isoelectric point is at pH higher than 6, while (A) as for acidic amino acids it is less than 6 Salting out of proteins is a reversible process (B) All natural amino acids belong to L-series (C) Sanger's method is used for determination of G-terminal amino acid (D) residue of polypeptide chain (Physical Section) The decimal equivalents of the binary numbers (10111)2 and (0.0101)2 are: 41. (A) 32, 0.312 (B) 23, 0.3125 23, 0.452 (C) 3.2; 0.0312 (D) According to Bohr's model, the energy of the 1s electron in hydrogen atom 42. is -13.6 eV. What is the energy of the 2s electron in lithium atom? (A) 30.6 eV 13.6 eV **(B)** (C) 3.4 eV (D) 122.4 eV - 43. For a particle in a one-dimensional box of length *l*, what are the number of nodes in the wave function and where is the maximum probability in the first excited level? - (A) 1, $\frac{l}{2}$ - (B) 2, $\frac{l}{2}$ - (C) $0, \frac{l}{4} \text{ and } \frac{l}{2}$ - (D) 1, $\frac{l}{4}$ and $\frac{3l}{4}$ - 44. Which of the following molecules can be regarded as the best example of a particle in one-dimensional box ? - (A) Ethane - (B) Butane - (C) Ethylene - (D) 1, 3, butadiene - 45. Which of the following two molecular pairs will give both a rotational and vibrational spectrum? - (A) HCl and CO2 - (B) CO₂ and O₂ - (C) HCl and H2O - (D) CO₂ and H₂O - 46. The selection rules for spectral transitions in atomic spectra are : - (i) $\Delta x = 1, 2, 3, 4...$ - (ii) $\Delta l = \pm 1$ Determine, which of the following transitions are allowed: - (A) $1s \rightarrow 3p$ - (B) $3p \rightarrow 3d$ - (C) $3p \rightarrow 4p$ - (D) All of the above three - The quantum yield for the photochemical combination of H2(g) and Cl2(g) 47. to form HCl(g) is 1.0×10^5 at a wavelength of 600 nm. What is the number of moles of HCl produced per joule of radiant energy absorbed ? - (A) 5.01 - (B) 0.501 - (C) 50.0 - (D) 10.02 - Using equipartition principles, what are the average energies of these 48. molecules : He, H2 and CO2. - (A) $\frac{3}{2}$ RT, $\frac{7}{2}$ RT, $\frac{15}{2}$ RT - (B) $\frac{3}{2}$ RT, $\frac{5}{2}$ RT, $\frac{7}{2}$ RT - (C) $\frac{5}{2}$ RT, $\frac{7}{2}$ RT, 9RT - (D) $\frac{5}{2}$ RT, $\frac{5}{2}$ RT, $\frac{7}{2}$ RT - The root mean square speed of the molecules of a perfect gas at 27°C is 49. 0.4 ms⁻¹. What is the speed at 327°C? - 0.80 ms^{-1} - (B) 1.20 ms⁻¹ - (C) 0.125 ms⁻¹ - 0.565 ms⁻¹ - The van der Waals constant a for the gases N_2 , O_2 , NH_3 and CH_4 are : 1.39, 1.36, 4.0 and 2.25 dm⁺⁶ atm. mol⁻². Which of the gases can most easily be 50. liquefied? - (A) - NH3 (B) - (C) CH4 - (D) - The edge length of the unit cell in a cubic crystal is a. What is the spacing 51. between (100) planes? - (A) - **(B)** - (D) | For an adiabatic process, which of the following statements is true: | | |--|--| | (A) $\Delta T = 0$ | | | (B) $q=0$ | | | (C) $q = \text{constant}$ | | | (D) $w=0$ | | | The value of K _p for the reaction: | | | $2A(g) + 2B(g) \iff 4C(g) + D(g)$ | | | at 500 K is 0.4 atm. Assuming $R = 0.081$ atm. K^{-1} mol, the value of K_c will | | | be: | | | The state of s | | | | | | | | | | | | | | | | ŝ | | () | | | () | | | AND | | | A CONTROL DESCRIPTION AND DESCRIPTION OF THE PERSON | | | The rate of a gaseous reaction is doubled when the temperature is raised from 27° to 40°C. The activation energy of the reaction (in kJ mol ⁻¹) is: | | | (A) 50.15 | | | (B) 65,50 | | | (C) 100.20 | | | (D) 86.65 | | | | | | $k_1 = 5.6 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}, k_2 = 3.2 \times 10^{-3} \text{ s}^{-1}$ | | | (A) 0, 1 | 3 | | (B) 1, 0 | | | (C) 1, 2, | | | (D) 2, 4 | | | | (B) $q=0$ (C) $q=\mathrm{constant}$ (D) $w=0$ The value of K_p for the reaction: $2A(g)+2B(g) \Longrightarrow 4C(g)+D(g)$ at 500 K is 0.4 atm. Assuming R = 0.081 atm. K ⁻¹ mol, the value of K_c will be: (A) 10^{-4} mol L ⁻¹ (B) 0.16 mol L ⁻¹ (C) 9.8×10^{-3} mol L ⁻¹ (D) 1.6 mol L ⁻¹ Equal volumes of two gases are mixed at constant temperature and pressure. The changes in enthalpy and entropy respectively are: (A) 0, 0 (B) 0, 5.76 JK ⁻¹ mol ⁻¹ (C) 5.76 J mol ⁻¹ , 0 (D) -10.0 J mol ⁻¹ , 5.76 JK ⁻¹ The rate of a gaseous reaction is doubled when the temperature is raised from 27° to 40°C. The activation energy of the reaction (in kJ mol ⁻¹) is: (A) 50.15 (B) 65.50 (C) 100.20 (D) 86.65 Identify the reaction order in each of the following rate constant expressions: $k_1 = 5.6 \times 10^{-4}$ mol dm ⁻³ s ⁻¹ , $k_2 = 3.2 \times 10^{-3}$ s ⁻¹ (A) 0, 1 (B) 1, 0 (C) 1.2 | | 57. | 10 g | of each of the | he following substance | s are dissolve | d in 1 kg of water : | | | | |-----|--|-----------------------------------|------------------------|----------------|----------------------|--|--|--| | | NaCl, C ₆ H ₁₂ O ₆ , Co(NH ₂) ₂ and CH ₃ OH | | | | | | | | | | Whie | | ce the highest depress | | | | | | | | (A) | CH ₃ OH | A | | | | | | | | (B) | NaCl | 100 | | | | | | | | (C) | Co(NH ₂) ₂ | | | NE. | | | | | | (D) | $C_6H_{12}O_6$ | | | | | | | 58. The number of degrees of freedom in the water system at its triple point and freezing point are: - (A) 1, 0 - (B) 0, 0 - (C) 0, 1 - (D) 1, 1 59. When the pH of the solution in the standard hydrogen electrode is increased by one pH unit, its electrode potential: - (A) decreases by 59 mV - (B) increases by 59 mV - (C) decreases by 29.5 mV - (D) becomes zero 60. For the oxygen half cell reaction : $$O_2(g) + 2H_2O(1) + 4e^- \rightarrow 4OH^-(aq)$$ ΔG°/FE° is equal to: - (A) 1 - (B) 2 - (C) 4 - (D) -4