12/20/11 Code: A-20

AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE06/ AC04/ AT04
Time: 3 Hours

Subject: SIGNALS & SYSTEMS
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

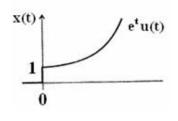
Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Given a signal $y(t) = \sin^{-m} 10t \cos^{n} 10t$

	Values of m & n
A	m is odd, n is even
В	m & n are odd
C	m & n are even
D	m is even n is odd

Which among the following is correct?


	A	В	С	D	
(A)	1	2	1	2	
(B)	1	1	2	2	
(C)	2	1	2	1	
(D)	1	2	2	1	

- Characteristics of signal y(t)
- 1 Odd 2 Even

- b. The signal $x(t) = A \cos(\omega_0 t + \varphi)$ is
 - (A) An energy signal
 - **(B)** A power signal
 - (C) An energy as well as a power signal
 - **(D)** Neither an energy nor a power signal
- c. Which of the following is the correct statement? The system characterized by the equation y(t) = ax(t) + b is
 - (A) Linear for any value of b
- **(B)** Linear if b>0

(C) Linear if b<0

(D) Non-linear

d.

For the signal shown above

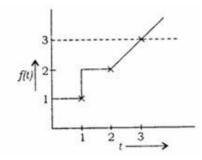
- (A) Only Fourier transform exists
- **(C)** Both Laplace and Fourier transforms exists
- (B) Only Laplace transform exists
- (D) Neither Laplace nor Fourier transforms exist
- e. The Fourier transform of u(t) is
 - **(A)** $1/j\omega$

(B) jω

(C) $1/(1+j\omega)$

- **(D)** $\pi\delta(\omega) + 1/j\omega$
- f. Match List-I (Application of Signals) with List-II (Definition) and select the correct answer using the code given below of the lists:

of the lists:		
List-I		List-II
(Application of Signals)		(Definition)
A. Reconstruction	1. Sa	mpling rate is chosen significantly greater than
	th	e Nyquist rate
B. Over sampling	2. A	liasing will take place
C. Interpolation	3. T	convert the discrete time sequence back to a
	cc	ntinuous time signal and resample
D. Decimation	4. A	ssign value between samples and signals


	A	В	С	D
(A)	3	4	1	2
(B)	2	1	4	3
(C)	3	1	4	2
(D)	2	1	1	3

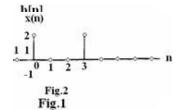
- g. What is the inverse Laplace transform of e^{-as} / s?
 - (A) e^{-at}

(B) u(t-a)

(C) δ (t-a)

- **(D)** (t-a) u(t-a)
- h. What is the Z-transform of the signal $x[n] = \alpha^n u(n)$?
 - **(A)** X(z) = 1 / (z-1)
- **(B)** X(z) = 1 / (1-z)
- **(C)** $X(z) = z / (z-\alpha)$
- **(D)** $X(z) = 1 / (z-\alpha)$
- i. The auto-correlation function $Rx(\tau)$ of a random process has the property that Rx(0) is equal to
 - (A) The square of the mean value of the process
 - (B) The mean squared value of the process
 - (C) The smallest value of $R_x(t)$
 - **(D)** $\frac{1}{2}$ [Rx (t) + R_x (-t)]
- j. Consider the following waveform diagram:

Which one of the following gives the correct description of the waveform shown in

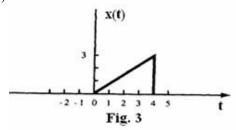

the above diagram?

(A) u(t) + u(t-1)

- **(B)** u(t) + (t-1) u(t-1)
- (C) u(t) + u(t-1) + (t-2) u(t-2)
- **(D)** u(t) + (t-2) u(t-2)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** A discrete-time LTI system has the impulse response h[n] depicted in the Fig.1. Use the linearity and time invariance to determine the system output y[n] if the input is (10)
 - (i) $x[n] = 3\delta[n] 2\delta[n-1]$
 - (ii) x[n] as given in Fig.2



A Continuous – time signal x(t) is shown in Fig.3. Sketch and label each of the following signals.

(i) x(2t) (ii) x(t/2)

(iii) x(-t)

Q.3 a. Evaluate the following integrals:

(i)
$$\int_{1}^{2} (3t^2 + 1) \delta(t) dt$$

$$(ii) \int_{-\infty}^{\infty} (t^2 + \cos \pi t) \delta(t-1) dt$$

$$\int_{-\infty}^{\infty} e^{-1} \delta'(t) dt$$

(iii)
$$\int_{-\infty}^{\infty} e^{-1} \delta(2t-2) dt$$

$$\int_{-\infty}^{\infty} e^{-1} \delta'(t) dt$$

- b. Consider the sinusoidal signal $x(t) = \cos 15t$
 - (i) Find the value of sampling interval T_s , such that $x[n] = x(nT_s)$ is a periodic sequence.
 - (ii) Find the fundamental period of $x[n] = x(nT_s)$ if $T_s = 0.1\pi$ seconds.
- A 12V pulse that is 4s wide and centred at t = 5s is applied across the terminals of automotive seat belt warning buzzer. The buzzer can be modeled as a pure resistance of 20Ω . Find the energy absorbed in the buzzer and the signal energies for the signals v(t) and i(t). (8)
- **Q.4** State the following properties of Continuous-Time Fourier transform.
 - Conjugate and Conjugate symmetry
 - (ii) Differentiation and Integration
 - (iii) Time and frequency scaling

- (2+2+2)
- b. $x_1(t)$ is bandlimited to 2 kHz. $x_2(t)$ is bandlimited to 3 kHz. Using properties of Fourier Transform, find the Nyquist

Code: A-20 12/20/11

rate for the following

(i) $x_1(2t)$

(ii) $x_2(t-3)$

(iii) $x_1(t) + x_2(t)$

(iv) $x_1(t)x_2(t)$

(v) $x_1(t) * x_2(t)$ (10)

 $H(\omega) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}.$ The input to this filter is Consider an ideal low-pass filter with frequency response **Q.5**

$$x(t) = \frac{\sin at}{nt}$$

(i) Find the output y(t) for a $< \omega_c$

(ii) Find the output y(t) for $a > \omega_c$

(iii) In which case does the output suffer distortion?

(6)

b. Determine the complex exponential Fourier series representation for each of the following signals:

(i) $x(t) = \cos \omega_0 t$

(ii) $x(t) = \sin \omega_0 t$

(iii) $x(t) = \cos\left(2t + \frac{\pi}{4}\right)$

(iv) $x(t) = \cos 4t + \sin 6t$

(v) $x(t) = \sin^2 t$

(10)

a. Consider the periodic signal $x(n) = \cos \omega_0 n$ find its DTFT. **(4)** Q.6

b. Explain the following properties of DTFT

(i) Linearty

(ii) Time & frequency shift

(iii) Multiplication property

(iv) Parseval's relationship

(12)

Determine the bilateral Laplace transform and the corresponding ROC for the following signals: **Q.7**

(i) $x(t) = e^t \cos(2t) u(-t) + e^{-t} u(t) + e^{t/2} u(t)$

(ii) $x(t) = e^{3t+6} u(t+3)$

(iii) $x(t) = e^t \sin(2t + 4) u(t + 2)$

(iv) $x(t) = e^{t} \frac{d}{dt} (e^{-2t} u(-t))$

(16)

Determine the z-transform and ROC for the following time signals: **Q.8**

(i) x[n] = u[n]

(ii) $x[n] = (1/4)^n (u[n] - u[n-5])$

(iii) $x[n] = (1/4)^n u[-n]$

(iv) $x[n] = 3^n u[-n-1]$

(v) $x[n] = (2/3)^{|n|}$

(vi) $x[n] = (\frac{1}{2})nu[n] + (\frac{1}{4})nu[-n-1]$

Sketch the ROC, poles and zeros in the z-plane

(16)

 $S_{\mathbf{n}}(\mathbf{f}) = \begin{cases} 10^{-8} \left(1 - \frac{|\mathbf{f}|}{10^8} \right) & |\mathbf{f}| < 10^8 \\ 0 & |\mathbf{f}| > 10^8 \end{cases}$ This noise is passed

Q.9 A noise process has a power-spectral density given by through an ideal bandpass filter with a bandwidth of 2 MHz centered at 50 MHz

(i) Find the power content of the output process.

(ii) Write the output process in terms of the in-phase and quadrature component. Assume $f_0 = 50$ MHz.

components and find the power in each

(iii) Find the power-spectral density of the in-phase and quadrature

components.

(16)