1. For the reaction
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Equivalent weight of $\mathrm{NO}_{2} \mathrm{CO}_{3}$ is
(a) $\mathrm{M} / 2$
(b) M
(c) 2 M
(d) $\mathrm{M} / 4$

Sol: Ans [a] Because 2 moles of Na^{+}being transferred per mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
2.

Silicate structure unit of
(a) $\left(\mathrm{Si}_{2} \mathrm{O}_{11}\right)_{\mathrm{n}}{ }^{-6 \mathrm{n}}$
(b) $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{\mathrm{n}}{ }^{-2 \mathrm{n}}$
(c) $\left(\mathrm{Si}_{2} \mathrm{O}_{3}\right)$
(d) $\left(\mathrm{SiO}_{4}\right)^{-4}$

Sol: Ans [b] Factual
3. Depression in freezing point is 6 K for NaCl solution if K_{f} for water is $1.86 \mathrm{~K} / \mathrm{kg}$ mole amount of NaCl desoled in 1 kg water is
(a) 3.42
(b) 1.62
(c) 3.24
(d) 1.71

Sol: Ans [b] $\Delta \mathrm{T}_{f}=i \times \mathrm{K}_{f} \times \frac{n}{\mathrm{~W}} \times 1000$

$$
\begin{aligned}
& 6=2 \times 1.86 \times \frac{n}{1} \times 1 \\
& n=\frac{6}{2 \times 1.86}=1.62
\end{aligned}
$$

4. Excited state configuration of Mn^{++}is
(a) $t_{2 g}{ }^{4}$
(b) $t_{2 g}{ }^{3} e_{\mathrm{g}}{ }^{2}$
(c) $t_{2 g}{ }^{4} e_{\mathrm{g}}{ }^{2}$
(d) $t_{2 g}{ }^{5} e_{\mathrm{g}}{ }^{0}$

Sol: Ans [b] Configuration of Mn^{++}is [Ar] 3d ${ }^{5}$. After CSFE spliting in excited state 3 electrons in $t_{2 \mathrm{~g}}\left(\mathrm{~d}_{\mathrm{xy}}\right.$, d_{yz} and $\left.\mathrm{d}_{\mathrm{zx}}\right)$ and 2 electrons goes in $e_{\mathrm{g}}\left(\mathrm{d}_{\mathrm{z}^{2}}\right.$ and $\left.\mathrm{d}_{\mathrm{x}^{2}}-\mathrm{y}^{2}\right)$
5. Main constituent of plants is
(a) Cellulose
(b) Starch
(c) Fructose
(d) Lipids

Sol: Ans [a] Factual
6. CO_{2} is isostructural with
(a) $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) SnCl_{2}
(c) NO_{2}
(d) MgCl_{2}

Sol: Ans [a] It is linear as CO_{2}
7. Energy of photon of visivle light is
(a) 1 eV
(b) 1 MeV
(c) $1 \mu \mathrm{eV}$
(d) 1 KeV

Sol: Ans [a] λ for visivle light is in the range of 400 to 780 nm .

$$
\mathrm{E}=\frac{h c}{\lambda} \text { thus it is in the range of electron volt }(\mathrm{eV})
$$

8. Which of the following is thermosetting polymer
(a) Nylon-6
(b) Bakelite
(c) Nylon-66
(d) SBR

Sol: Ans [b] Factual
9. Phenol of reaction with CHCl_{3} and NaOH give Benzaldehyde intermediate of of this reaction is
(a) carbocatian
(b) carbonion
(c) redical
(d) carbene

Sol: Ans [d] Factual
10. $\mathrm{X} \xrightarrow[\mathrm{HNO}_{3}]{\mathrm{AgNO}_{3}}$ Yellow or white ppt.

Which of the following can not be X
(a)

(b)
$\left(\mathrm{CH}_{3}\right) \mathrm{CCl}$
(c)

(d)

Sol: Ans [a] As halogen is directly attached with the ring it will not precipite.
11. Which of the following is having highest bond length
(a) NO^{-}
(b) NO^{+}
(c) CN^{-}
(d) CN^{+}

Sol: Ans [a] Bond order is least for NO^{-}.
12. Which of the following are possible resonating structure of $\mathrm{N}_{2} \mathrm{O}$
$\stackrel{\rightharpoonup}{\mathrm{N}}=\mathrm{N}^{+}=\stackrel{\ddot{\mathrm{O}}}{\stackrel{\rightharpoonup}{.}}$
: $\underset{2}{\stackrel{\rightharpoonup}{\mathrm{~N}}}-\mathrm{N}^{+} \equiv \mathrm{O}:$
$: N \equiv \mathrm{~N}^{+}-\ddot{\mathrm{O}}:$
3
$\stackrel{\ddot{N}}{\mathrm{~N}}=\mathrm{O}^{+}=\ddot{\mathrm{N}}$
4
(a) 1 and 2
(b) 1 and 3
(c) 1, 2 and 3
(d) all of these

Sol: Ans [b] Factual.
13. Rate of a reaction can be expressed by following rate expression Rate $=k[A]^{2} \quad[B]$ if concentration of A is increased by 3 times and concentration of B is increased by 2 times how many times rate of reaction increases
(a) 9 times
(b) 27 times
(c) 18 times
(d) 8 times

Sol: Ans [c] $\mathrm{R}_{1}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$

$$
\mathrm{R}_{2}=\mathrm{k}[3 \mathrm{~A}]^{2}[2 \mathrm{~B}]
$$

$$
=\mathrm{k} \times 9[\mathrm{~A}]^{2} 2[\mathrm{~B}]
$$

$$
=18 \times \mathrm{k}[\mathrm{~A}]^{2}[\mathrm{~B}]
$$

$$
=18 \times \mathrm{R}_{1}
$$

14. Rate of a reaction can be expressed by following rate expression Rate $=k[A]^{2} \quad[B]$ if concentration of A is reduced by half by what times concentration of B is to be increased to have same rate of reaction
(a) 4 times
(b) 2 times
(c) 1/4 times
(d) 8 times

Sol: Ans [a] $\mathrm{R}_{1}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
Let consentration of B is changed by x times

$$
\begin{aligned}
\mathrm{R}_{2} & =\mathrm{k}[\mathrm{~A} / 2]^{2}[x \mathrm{~B}] \\
& =\mathrm{k} \times x / 4[\mathrm{~A}]^{2}[\mathrm{~B}] \\
& =x / 4 \times \mathrm{k}[\mathrm{~A}]^{2}[\mathrm{~B}] \\
\text { as } \mathrm{R}_{2} & =\mathrm{R}_{1} \text { thus } x \text { is } 4 .
\end{aligned}
$$

15. $\mathrm{Sn}^{4+}+3 e^{-} \longrightarrow \mathrm{Sn}^{2+} \mathrm{E}^{\circ}=0.13 \mathrm{~V}$
$\mathrm{Br}_{2}+2 e^{-} \longrightarrow 2 \mathrm{Br}^{-} \quad \mathrm{E}^{\circ}=1.08 \mathrm{~V}$
Calculate K_{eq} for the cell reaction for the cell reaction for the cell formed by two electrodes.
(a) 10^{41}
(b) 10^{32}
(c) 10^{-32}
(d) 10^{-42}

Sol: Ans [b] Cell reaction is

$$
\begin{aligned}
& \mathrm{Br}_{2}+\mathrm{Sn}^{2+} \longrightarrow 2 \mathrm{Br}^{-}+\mathrm{Sn}^{4+} \mathrm{E}^{\circ}=0.95 \mathrm{~V} \\
& \mathrm{E}_{\mathrm{cell}}^{\circ}=\frac{0.059}{2} \log \mathrm{~K}_{\mathrm{eq}} \\
& 0.95=\frac{0.059}{2} \log \mathrm{~K}_{\mathrm{eq}} \\
& \frac{0.95 \times 2}{0.059}=\log \mathrm{K}_{\mathrm{eq}} \\
& \mathrm{~K}_{\mathrm{eq}} \simeq 10^{32}
\end{aligned}
$$

16. Consider the reactions
$\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} \mathrm{~K}_{1}$
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \quad \mathrm{~K}_{2}$
Give the equilibrium constant for the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$ from N_{2} and O_{2}
(a) $\frac{1}{\mathrm{~K}_{1}^{2} \mathrm{~K}_{2}}$
(b) $\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
(c) $\sqrt{\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}}$
(d) $\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}$

Sol: Ans [a] $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$
Reaction is obtained by $(-2 \times$ equation 1$)+(-1 \times$ equation 2$)$.
17. Half life of radioactive element is 16 hrs what time it will take for 75% disintegration.
(a) 32 days
(b) 32 hrs
(c) 48 hrs
(d) 16 hrs

Sol: Ans [b] $\quad \mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{n}$

$$
\begin{aligned}
& \mathrm{N}_{0}-\frac{3 \mathrm{~N}_{0}}{4}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{n} \\
& n=2 \\
& \text { thus } 32 \mathrm{hrs} .
\end{aligned}
$$

18. Fridal-craft acylation can be given by

(a)

(b)

(c)

(d) $\mathrm{R}-\mathrm{O}-\mathrm{R}$

Sol: Ans [a] Factual.
19. Which of the following is having maximum acidic strength
(a)

(b)

(c)

(d)

Sol: Ans [a] $-\mathrm{M} \mathrm{NO}_{2}$ group is para to phenolic OH .
20. What is the reaction for unusual high B.P. of water.
(a) due to the presence H^{+}and OH^{-}ions in water
(b) due to dipole-dipole interactions.
(c) due to London forces.
(d) strong London forces.

Sol: Ans [b] Factual.
21. Shine at freshly cut sodium is because of
(a) due to oscilation of free electrons
(b) deu to weak metallic bonding
(c) due by absorption of light in crystal lattice
(d) due to presence of free valency at the surface

Sol: Ans [a] Factual.
22. Most Acidic oxide amount following is
(a) $\mathrm{Cl}_{2} \mathrm{O}_{5}$
(b) $\mathrm{Cl}_{2} \mathrm{O}$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{3}$
(d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$

Sol: Ans [d] Having highest oxygen content.
23.

C is
(a)

(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
(d)

Sol: Ans [b]

24.

(a)

(b)

(c)

(d)

Sol: Ans [c] By Wurtz reaction.
25. $\mathrm{A}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pd}-\mathrm{BaSO}_{4}}$
 C
O
O
(a)

(b)

(c)

(d)

Sol: Ans [a] By Rosenmund reduction.
26. $\mathrm{RX}+\mathrm{A} \longrightarrow \mathrm{RNC}$

A is
(a) AgCN
(b) KCN
(c) NaCN
(d) HCN

Sol: Ans [a] Nucleophilic substitution in presence of Ag^{+}.
27. In evapouration of water $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are
(a),++
(b),+-
(c),--
(d),-+

Sol: Ans [a] Process is endothermic and rendamnes increases.
28. ${ }_{7}^{14} \mathrm{~N}+{ }_{2}^{4} \mathrm{He} \longrightarrow \mathrm{X}+{ }_{1}^{1} \mathrm{H}, \mathrm{X}$ is
(a) ${ }_{8}{ }^{18} \mathrm{O}$
(b) ${ }_{8}{ }^{17} \mathrm{O}$
(c) ${ }_{8}^{14} \mathrm{~N}$
(d) $7^{15} \mathrm{~N}$

Sol: Ans [b] Self explanatiory.
29. Which of the following is correct for the reaction $\Delta \mathrm{H}=+\mathrm{ve}$ and $\Delta \mathrm{S}=+\mathrm{ve}$
(a) Spontaneous at high temperature
(b) spontaneous at low temperature
(c) non spontaneous at high temperature
(d) non spontaneous at all temperatures

Sol: Ans [a] $|\mathrm{T} \Delta \mathrm{S}|>|\Delta \mathrm{H}|$ for reaction to be spontaneous under these conditions.
30. Petroleum is obtained from water gas, name of the reaction involved is
(a) Fischer-Tropsch
(b) Bengoic
(c) Dow's
(d) Kjeldahl's

Sol: Ans [a] Factual
31. Which of the following statements is wrong?
(a) metals are more than nonmetals
(b) there are only few Metalloids
(c) hydrogen can be placed with alkali metals as well as with halogen in periodic table
(d) non metals are more than metals

Sol: Ans [d] Factual
32. What volume of $\mathrm{M} / 10 \mathrm{NaOH}$ is to added in $50 \mathrm{ml} \mathrm{M} / 10$ acetic acid solution to get a buffer solution having highest buffer capacity
(a) 50 ml
(b) 25 ml
(c) 10 ml
(d) 40 ml

Sol: Ans [b] For highest buffer capacity $\mathrm{pH}=\mathrm{pKa}$ For this [salt] = [acid] thus 25 ml
33. Monomer of nucleic acid
(a) Nucleotides
(b) Nucleoxides
(c) Aminoacids
(d) carboxlic acid

Sol: Ans [a] Factual
34. $(\mathrm{A}) \longrightarrow$ Acetyl CO. A in aerobic condition and if conditions are anaerobic then ethyl alcohol is formed A is
(a) Pyruvate
(b) Citrate
(c) Fumerate
(d) Ascorbate

Sol: Ans [a] Factual
35. If volume containing gas is compressed to half , how many moles of gas remained in the viseed
(a) just double
(b) just half
(c) same
(d) more than double

Sol: Ans [c] As gas is not escaped or injected number of moles remain the same.
36. At same temperature calculate the ratio of average velocity of SO_{2} to CH_{4}
(a) $2: 3$
(b) $3: 4$
(c) $1: 2$
(d) $1: 6$

Sol: Ans [c] $\mathrm{U}_{\mathrm{Av}} \propto \frac{1}{\sqrt{\mathrm{M}}}$ at constant temperature.
37. If temperature of 1 mole of gas is increased by $50^{\circ} \mathrm{C}$ calculate the change in kinetic energy of the system.
(a) 623.25 J
(b) 6.235 J
(c) 623.5 J
(d) 6235.0 J

Sol: Ans [a] K.E. $=\frac{3}{2}$ RT for 1 mole of gas.

$$
\Delta \mathrm{K} . \mathrm{E} .=\frac{3}{2} \mathrm{R} \Delta \mathrm{~T}
$$

38.

Give name of the complex name should specify the position of ligands.
(a) bistransphosphinecarbonylchloroiridium [II]
(b) carbonylchlorobistransphosphineiridum [III]
(c) carbonylchlorobistransphosphineiridum [I]
(d) chlorocarbonylbistransphosphineiridium [I]

Sol: Ans [c] Factual
39. Ozonolysis products of an olefin are ${\underset{\mathrm{CHO}}{ }}_{\stackrel{\mathrm{CHO}}{ }}^{\text {and }} \stackrel{\mathrm{CH}_{2} \mathrm{CHO}}{\mathrm{CH}_{2} \mathrm{CHO}}$. Olefin is
(a)

(b)

(c)
(d)

Sol: Ans [c] Self explanatory.
40. 10 g each of CH_{4} and O_{2} are kept in cylinders of same volume under same temperatures give the pressure ratio of two gases
(a) $2: 1$
(b) $1: 4$
(c) $2: 3$
(d) $3: 4$

Sol: Ans [a] $\mathrm{P} \propto n$

$$
\text { for same mass } \mathrm{P} \propto \frac{1}{\mathrm{M}}
$$

41. A Bubble of volume V_{1} is in the bottom of a pond at $15^{\circ} \mathrm{C}$ and 1.5 atm . pressure when it comes at the surface it observes a pressure of 1 atm.at $25^{\circ} \mathrm{C}$ and have volume V_{2} give $\mathrm{V}_{2} / \mathrm{V}_{1}$
(a) 15.5
(b) 0.155
(c) 155.0
(d) 1.55

Sol: Ans [d] $\mathrm{V}=\frac{n R T}{P}$
thus $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{P}_{2}} \times \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}$.
by putting values $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ is 1.55 .
42. Consider the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}$ if we start with 3 L of SO_{2} and 2 L of O_{2} final change in volume is
(a) increases by one litre
(b) increases by 1.5 litre
(c) decreases by 1 litre
(d) decreases by 1.5 litre
43. Oxidation state of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(a) 4 and 6
(b) 3 and 5
(c) 2 and 2.5
(d) 6 and 6

Sol: Ans [c] Self Explanatory.

