2007 MT: Metallurgical Engineering

Duration: Three Hours Maximum Marks: 150

Read the following instructions carefully.

- 1. This question paper contains 85 objective type questions. Q.1 to Q.20 carry one mark each and Q.21 to Q.85 carry two marks each.
- 2. Attempt all the questions.
- 3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely.
- 4. Wrong answers will carry NEGATIVE marks. In Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. In Q.21 to Q.76, Q.78, Q.80, Q.82 and in Q.84, 0.5 mark will be deducted for each wrong answer. However, there is no negative marking in Q.77, Q.79, Q.81, Q.83 and in Q.85. More than one answer bubbled against a question will be taken as an incorrect response. Unattempted questions will not carry any marks.
- Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- 6. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 7. Calculator is allowed in the examination hall.
- 8. Charts, graph sheets or tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
- This question paper contains 20 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

Userul Data		
1 poise = 0.1 Pa s Universal Gas Constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}$ Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ 'Acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$	-1	Atomic Mass H = 1 C = 12 N = 14 O = 16
Q. 1 – Q. 20 ca	rry one mark each.	
Q.1 The number of boundary conditions diffusion equation ($\nabla^2 C = 0$) is	required to solve a stea	ndy-state two-dimensiona
(A) 1 (B) 2	(C) 3	(D) 4
Q.2 The determinant of the matrix $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$	2 4 is	
_5 3	1	
(A) -10 (B) -5	(C) 0	(D) 5
Q.3 With ε = true plastic strain and n = strain cylindrical tensile specimen of a work-l	in-hardening coefficie hardening metal occurs	nt, necking in a
$(A) \varepsilon = n \qquad (B) \varepsilon = 2n$	(C) $\varepsilon = n^{0.5}$	(D) a = 2
is stretched to 100 mm. What is the defo		on and 25 mm length,
(A) $1 \text{ mm} \times 1 \text{ mm}$ (B) $2 \text{ mm} \times 2 \text{ mm}$	(C) 3 mm × 3 mm	(D) 4
Q.3 Loading in Mode I fracture refers to		(D) 4 mm × 4 mm
(A) Opening mode (B) Sliding mode Q.6 Cyclones are a second and the control of t	(C) Tearing mode	(D) Twisting mode
Q.6 Cyclones are primarily used for		
(A) Comminution (C) Dewatering	(B) Concentration (D) Classification	
Q.7 A typical collector used in sulphide minera	I flotation :-	
(A) Pine oil (C) Oleic acid	(B) Potassium ethyl	
	(D) FOIVacrylamide	
Q.8 In a three component system at constant pre that can coexist at equilibrium is	essure, the maximum n	umber of phases
(A) 2		

(C) 4

(B) 3

(D) 5

Q.9	Which metal is e	xtracted by leaching?				
	(A) Iron	(B) Aluminum	(C) Lead	(D) Gold		
Q.10	0 In a niobium micro-alloyed steel joined by fusion welding the most likely caus loss of strength in the heat affected zone (HAZ) is					
	(B) coarse pearli	parsening and grain gro- te and grain boundary partensite and grain bound bainite	recipitation			
Q.11	The primary source of heat in cupola melting is provided by the reaction:					
	(A) $C + O_2 \rightarrow C$ (C) $C + CO_2 \rightarrow C$		(B) C + H ₂ O $-$ (D) CaCO ₃ \rightarrow			
Q.12		es NOT work-harden at times. This is because	room temperature	, even upon bending back		
	(B) the grains gr (C) the recrystal	ons become immobilize ow preferentially in the lization temperature is bave a preferred orientation	direction of deform	nation		
Q.13	A typical cooling	g rate for metal substrat	e powder atomizati	on is of the order of		
	(A) 10 ⁻⁴ Ks ⁻¹	(B) 1 Ks ⁻¹	(C) $10^4 \mathrm{Ks}^{-1}$	(D) 10 ⁸ Ks ⁻¹		
Q.14	In foundry pract	ice, the fluidity of an al	loy does NOT incre	ease with increasing		
	(A) superheat (B) channel size (C) flow velocity (D) heat transfer	y	Arra Manifesta			
Q.15	In a polymer with molecular weigh	th a large quantity of relation	atively small chain	s, the mass-averaged		
	(B) smaller than (C) equal to the	the number-averaged in the number-averaged in number-averaged mole- the number-averaged in	nolecular weight cular weight			
Q.16	Which one of th	e following alloy system	ns exhibits comple	te solid solubility?		
	(A) Cu-Ni (C) Pb-Sn		(B) Fe-Cu (D) Cu-Zn			

(C) increases so	olute segregation to the column to the column to the column term of the column terms of the col	ba and I	
Q.18 Liquid steel is i	n equilibrium with a reference state) in liq	graphite crucible. T	he activity of carbon (with
(A) 0.5	(B) 0.85	(C) 1.0	(D) 1.5
Q.19 In one FCC unit	cell, there are		
(C) 12 tetrahedra	l and 8 octahedral site and 4 octahedral site al and 4 octahedral site and 4 octahedral site	es	
Q.20 The dimension o temperature (θ) i	f thermal conductivit	y in terms of mass (M), length (L), time (T), and
(A) M $L^2 T^{-3} \theta^{-1}$	(B) M T ⁻³ θ ⁻¹	(C) L ² T ⁻¹	(D) M L T ⁻³ θ ⁻¹
	Q. 21 to Q. 75 car	ry two marks each	
Q.21 The configuration $S_c = -R[x \ln x + ($ The limit of S_c , as	all entropy, S_c in an id $(1-x)\ln(1-x)$, where S_c tends to zero ($\lim_{x\to 0}$	ex 18 the mala front	s given by: ion of solute.
(A) ∞	(B) R In 2	(C) R	(D) 0
Q.22 The [100] and [110	o] directions in a cubi	ic crystal are coplan	ar with
(A) [101]	(B) [001]	(C) [120]	(D) [1111
Q.23 In a RH degasser, t	-W -1 =	$=R(C_{\mu}-C_{\mu})$	y the following equation:
the circulation rate	in tons per minute. In	in tons, C_H is the hyperstrate on the concentrate of the concentra	drogen concentration at ion in liquid steel. R is n the hydrogen content hould be
(A) 10.05 tons/min	(B) 12.51 tons/min	(C) 14.73 tons/m	in (D) 16.48 tons/min
	MT	4/20	

Q.17 A small amount of thoria is doped into tungsten filament wires used in light bulbs.

This is because thoria particles

(A) decreases solute diffusivity

(B) enhance the mobility of grain boundary

Q.24 If $V = (4xy - 3z^3) \mathbf{i} + 2x^2 \mathbf{j} - 9xz^2 \mathbf{k}$, the divergence of V is (A) (4xy-18z) (B) $(4y^2-9xz)$ (C) (4y-18xz) (D) $(2xy+18z^2)$

Q.25 The carbon concentration profile C(x,t) during decarburization is given by:

$$C(x,t) = L + M \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

where x is the distance from the surface, t is time, D is the diffusion coefficient of carbon in austenite, and L and M are constants. If the furnace atmosphere is free of carbon and maintained at 927°C, approximately how long does it take for a steel with an initial carbon concentration of 1.2 % to attain a carbon concentration of 0.8 % at a distance of 0.5 mm below the surface?

[Given: $D = 1.28 \times 10^{-11} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$ at 927 °C; erf(0) = 0; erf(0.65) = 0.64; erf(0.69) = 0.667; erf(0.7) = 0.678; $erf(\infty) = 1$

(A) 30 hours

(B) 3 hours

(C) 3 minutes

(D) 30 seconds

Q.26 The probability distribution function, p(x), for a random variable, x, is given by:

$$p(x) = \frac{1}{\sqrt{\pi}} \exp(-x^2).$$

The probability that x lies between $x_1 = 0.6$ and $x_2 = 0.8$ is [Use single-step trapezoidal rule]

. (A) 0

(B) 0.069

(C) 0.138

(D) 0.560

Q.27 In the TTT diagram for the eutectoid carbon steel, the nose of the characteristic Ccurve is at 550 °C; this C-shape implies delayed transformation both above and below 550 °C. The delay at lower temperatures is due to low diffusivity. The delay at higher temperatures is due to

(A) low driving force for transformation

(B) low mobility of dislocations

(C) low concentration of vacancies

(D) low diffusivity

Q.28 A cylindrical specimen of an isotropic metal (Young's modulus, E = 200 GPa) is elastically deformed in tension. Length of this cylinder before deformation is 100 mm and the diameter is 10 mm. After the deformation, they are 100.1 mm and 9.996 mm, respectively. The shear modulus, G, of this metal is [Given: E = 2 G (1+v)]

(A) 71.43 GPa

(B) 76.92 GPa

(C) 83.33 GPa (D) 100.00 GPa

Q.35 For ingot breakdown by hot rolling, the rolling axis in order to	lls are generally grooved parallel to the roll
 (P) increase the angle of bite (Q) decrease the rolling load (R) achieve larger reduction (S) decrease roll flattening 	
(A) P, Q (C) P, R	(B) Q, R (D) Q, S
Q.36 An induction furnace with a holding capar white iron charge. The maximum available melt 1-ton of charge is 530 kWh. Assumi in tons/hour is approximately	city of 20 tons is used for melting 5 tons of le power is 5 MW. The energy required to ng no heat loss, the maximum melting rate
(A) 18.4 (B) 15.8	(C) 9.4 (D) 1.8
Q.37 The pressure required to maintain flow do	uring indirect extrusion
 (P) decreases with decreasing leng (Q) increases with increasing extra (R) is independent of the length of (S) is independent of extrusion rat 	usion ratio f the billet
(A) P, Q (C) R, S	(B) Q, R (D) P, S
Q.38 Match the forming methods in group-I w	with the defects in group-II.
Group-I (P) Extrusion (Q) Closed die forging (R) Rolling	Group-II (1) Flash cracking (2) Fir-tree cracking (3) Alligatoring (4) Earing
(A) P-1, Q-2, R-3 (C) P-3, Q-1, R-4	(B) P-4, Q-3, R-1 (D) P-2, Q-1, R-3
Q.39 Match the additions to the flux cover in in group-II.	a welding rod in group-I with their functions
Group-I (P) Boron, Niobium (Q) Aluminium, Silicon (R) Sodium Oxide, Potassium Oxide	Group-II (1) De-oxidizer (2) Grain refiner (3) Arc stabilization (4) Protection of weld metal
(A) P-1, Q-2, R-3 (C) P-3, Q-1, R-4	(B) P-2, Q-1, R-3 (D) P-1, Q-3, R-4

(P) high electrical resistivity an	d low melting point	
(P) high electrical resistivity and	id ion member	
(Q) high thermal conductivity (R) high electrical resistivity ar	nd high melting point	
(S) low thermal conductivity		
(3) 1011 1101111111		
(A) P, Q	(B) P, S	
(C) R, Q	(D) R, S	
.41 The atomic packing factor for the dia	mond cubic structure is	
(A) 0.74 (B) 0.68	(C) 0.34	(D) 0.25
()	austanite that can form	in an iron-carbon alloy
0.42 The maximum amount of proeutection	austenne mat can form	
containing 3.5% carbon is [Given: The maximum solubility of		
[Given: The maximum soluting of		
(A) 24.80% (B) 36.53%	(C) 67.87%	(D) 72.52%
	h reference to LD steel	making
0.43 Identify the incorrect statement wit	il leference to 22	
(A) The temperature of the LD furn	ace is maintained at aro	und 1600 °C.
(A) The temperature of the LD furn		
(B) The basicity of slag is maintaine	rization should proceed	
(B) The basicity of slag is maintaine	rization should proceed	
(B) The basicity of slag is maintaine(C) Dephosphorization and decarbu(D) High silicon hot metal may lead	rization should proceed to slopping.	
(B) The basicity of slag is maintaine(C) Dephosphorization and decarbu(D) High silicon hot metal may lead	rization should proceed to slopping.	simultaneously.
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with	arization should proceed to slopping. a product in group II.	simultaneously. Group-II
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I	rization should proceed to slopping. a product in group II.	Group-II tal of GaAs
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process	rization should proceed to slopping. a product in group II. (1) single crys (2) hypoeutect	Group-II tal of GaAs tic Al-Si alloy
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring	rization should proceed to slopping. a product in group II. (1) single crys (2) hypoeutect (3) vinyl floor	Group-II tal of GaAs tic Al-Si alloy
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion	rization should proceed to slopping. a product in group II. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring	rization should proceed to slopping. a product in group II. (1) single crys (2) hypoeutect (3) vinyl floor	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting	rization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1,	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4	rization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1,	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2	(1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3,	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2 R-1, S-2
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2	(1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3,	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2 R-1, S-2
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I	(1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containin s fibres R-3, S-2 R-1, S-2
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I	(1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group.	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containin s fibres R-3, S-2 R-1, S-2 p II.
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I (P) Cores for electric motors	rization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group Group-II (1) γ - Fe ₂ O ₃ (2) barium tit	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containin s fibres R-3, S-2 R-1, S-2 p II.
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I (P) Cores for electric motors (Q) Stripe on credit cards	crization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group Group-II (1) γ - Fe ₂ O ₃ (2) barium tit (3) Co ₅ Sm in	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2 R-1, S-2 p II. particles tanate termetallic compound
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I (P) Cores for electric motors (Q) Stripe on credit cards (R) Permanent magnet	crization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group Group-II (1) γ - Fe ₂ O ₃ (2) barium tit (3) Co ₅ Sm in	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containin s fibres R-3, S-2 R-1, S-2 p II.
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I (P) Cores for electric motors (Q) Stripe on credit cards	crization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group Group-II (1) γ – Fe ₂ O ₃ (2) barium tit (3) Co ₅ Sm in (4) grain-orie	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2 R-1, S-2 p II. particles tanate termetallic compound ented silicon steel
(B) The basicity of slag is maintaine (C) Dephosphorization and decarbu (D) High silicon hot metal may lead Q.44 Match each process in group I with Group-I (P) Czochralski process (Q) Calendaring (R) Pultrusion (S) Thixocasting (A) P-1, Q-2, R-3, S-4 (C) P-1, Q-3, R-4, S-2 Q.45 Match each application in group I Group-I (P) Cores for electric motors (Q) Stripe on credit cards (R) Permanent magnet	crization should proceed to slopping. (1) single crys (2) hypoeutect (3) vinyl floor (4) polymer m continuou (B) P-4, Q-1, (D) P-4, Q-3, with a material in group Group-II (1) γ - Fe ₂ O ₃ (2) barium tit (3) Co ₅ Sm in	Group-II tal of GaAs tic Al-Si alloy tile natrix composite containing s fibres R-3, S-2 R-1, S-2 p II. particles tanate ntermetallic compound ented silicon steel , R-3, S-2

Q.46 Match each phase in group I with a description in group II. Group-I (1) a three-component eutectic of iron, (P) ε - Carbide iron-carbide, iron-phosphate found in (2) an embrittling compound found in (Q) Sigma phase ferritic stainless steels (3) obtained on tempering of hardened (R) δ - Ferrite (4) responsible for causing the weld-(S) Steadite deposit on austenitic stainless steels to be slightly magnetic (B) P-1, Q-2, R-4, S-3 (A) P-1, Q-3, R-4, S-2 (D) P-3, Q-2, R-4, S-1 (C) P-3, Q-2, R-1, S-4 O.47 Match each material in group I with a bond-type in group II. Group-II Group-I (1) Metallic bonding (P) Silicon (2) Covalent bonding (O) Copper (3) Ionic bonding (R) Sodium chloride (4) Van der Waals bonding (B) P-1, Q-3, R-1 (A) P-2, Q-1, R-4 (D) P-2, Q-1, R-3 (C) P-4, Q-1, R-3 Q.48 The activation energy for a reaction is 100 kJ/mole. The approximate increase in temperature required for doubling the rate of reaction, from that at 25 °C, is (B) 10 °C (C) 15 °C (D) 20 °C (A) 5 °C 0.49 The standard free energy change for the reaction, $2Fe(s) + \frac{3}{2}O_2(g) = Fe_2O_3(s)$, is 0.258 T - 820.89 kJ mol⁻¹, where T is the temperature in K. The approximate pressure for the dissociation of Fe₂O₃ at 1100°C is (B) 1.46×10^{-12} atm (C) 2.3×10^{-7} atm (D) 3.55×10^{-15} atm (A) 1.0x10⁻²⁰ atm

Q.50 Identify the incorrect statement with reference to unit processes in extractive metallurgy.

(A) Selective distillation is a purification technique used in extractive metallurgy

(B) Coking of coal is carried out in a shaft furnace

(C) Precipitation is a hydrometallurgy route of purification

(D) Predominance area diagram is used to select the operating conditions of roasting

			the lower part of the sl	
			I injection through tuye	
			n indication of "channe of be improved by prop	
Q.52	Match the process	in group I to its desc	ription in group II.	
	Group-I		Group-II	
	(P) COREX proce	ecc.	(1) decarburization	of liquid steel
	(Q) OBM process		(2) steelmaking us	
	(R) Carbonyl proc	ess	(3) nickel refining	
	(S) AOD process		(4) alternative rout production	te of fiquid from
	(A) D 4 O 2 D 2	C 1	(D) D 2 O 1 D 2	C A
	(A) P-4, Q-2, R-3		(B) P-3, Q-1, R-2,	
	(C) P-1, Q-4, R-3,	, S-1	(D) P-2, Q-1, R-3,	8-4
Q.53	The process of cer	mentation involves		
	(A) separation of	the desired metal by a	dding a more reactive i	metal
			I from molten metal by	
			of the desired metal in	
			of the desired metal in a	
			or the desired metal in t	ar morganic sorveni
Q.54	Identify the incor	rect statement.		
		on gradient in the elec	ctrolyte may lead to the	formation of a
	galvanic cell			
			oxidation resistance of	
			d by applying a coating	
	(D) A steel bolt or	nut is permissible or	a large copper vessel	
Q.55	Nanoparticles der	ive some of their inter	resting properties due to	the large value of f_c .
	the fraction of sur	face atoms, compared	to f_b , the fraction of at	oms in the bulk. The
		with the particle size,		
	(A) r ⁻³	(B) r ⁻²	(C) r ⁻¹	(D) r ²
1				OF THE REAL PROPERTY.
Q.56		single crystal of alun	ninium has a theoretical	shear strength of
	about			
	[Given: Shear Mo	dulus, $G = 28 \text{ GPa}$		
	(A) 28.0 GPa	(B) 4.5 GPa	(C) 0.56 GPa	(D) 0.07 GPa
0.57	The equilibrium v	acancy concentration	in copper is 588 ppm a	t 1000°C and 134 ppn
-		ar enthalpy of vacance		almostro borth (47)
	(A) 49 kJ mol ⁻¹	(B) 84 kJ mol ⁻¹	(C) 168 kJ mol ⁻¹	(D) 243 kJ mol ⁻¹
		MT	10/20	
		IVI I	10/20	

Q.51 Identify the **correct** statement with reference to blast furnace iron making.

- Q.58 In a cubic crystal with lattice parameter a, the dislocation reaction that is vectorially correct and energetically feasible is
 - $(A)\frac{a}{2}\left[1\overline{1}\overline{1}\right] + \frac{a}{2}\left[111\right] \rightarrow a\left[100\right]$
 - (B) $\frac{a}{2}[110] + \frac{a}{2}[110] \rightarrow a[110]$
 - (C) $\frac{a}{6}[101] + \frac{a}{6}[121] \rightarrow \frac{a}{3}[111]$
 - (D) $\frac{a}{2}[011] \rightarrow \frac{a}{6}[211] + \frac{a}{6}[12\overline{1}]$
- Q.59 The mechanical response of an elastomer (such as rubber) is characterized by
 - (P) an increase in elastic modulus with increasing temperature
 - (Q) large recoverable strains
 - (R) a decrease in elastic modulus with increasing temperature
 - (S) an adiabatic decrease in temperature on stretching
 - (A) Q, S

(B) P, S

(C) Q, R

- (D) P, Q
- Q.60 Which of the following statements are true about edge dislocations?
 - (P) Edge dislocations do not have an extra half plane associated with them
 - (Q) The Burgers vector is perpendicular to the line direction
 - (R) Edge dislocations can avoid obstacles by cross-slip
 - (S) Depending on geometry, parallel edge dislocations of opposite sign can attract or repel one another
 - (A) R

(B) P, Q, S

(C) Q, S

- (D) Q, R
- Q.61 A structural component in the form of a very wide 10 mm thick plate is to be fabricated from 4340 steel. If the design stress level for the component is 50% of the yield strength, the critical flaw size is

[Given: Yield Strength = 1515 MPa; $K_{Ic} = 60.4 \text{ MPa} \sqrt{m}$; Geometry factor, Y = 1]

- (A) 1.0 mm
- (B) 2.0 mm
- (C) 3.0 mm
- (D) 4.0 mm
- Q.62 The tensile yield strength of a ductile metal is 100 MPa. If the material is subjected to tensile stresses of $\sigma_2 = \sigma_3 = 50$ MPa along the second and third principal directions, the material yields when
 - (A) $\sigma_l = 50$ MPa in compression or 150 MPa in tension
 - (B) $\sigma_l = 50$ MPa in compression or 50 MPa in tension
 - (C) $\sigma_l = 100$ MPa in tension
 - (D) $\sigma_l = 0$

Q.63 A pure low-angle tilt	boundary may be ed	uivalently represented	by	
(A) an array of jogs of	(A) an array of jogs on an edge dislocation			
(B) a cross grid of sci	(B) a cross grid of screw dislocations (C) a dislocation pileup consisting of both edge and screw dislocations (C) a dislocation pileup consisting of both edge and screw dislocations			
(C) a dislocation pile	L'algorions pernen	dicular to the slip plane		
Q.64 Match the energy ga	ns in group-I with th	ne materials in group-II.		
Q.64 Match the chergy ga	Po B - 1			
Group I		Group II		
(P) Diamond		(1) 0.1 eV		
(Q) Silicon		(2) 0.7 eV		
(R) Gray Tin		(3) 1.1 eV		
(R) Glay IIII		(4) 6.0 eV		
		0.171		
(A) P-1, Q-3, R-4		(B) P-2, Q-4, R-1		
(C) P-3, Q-1, R-2		(D) P-4, Q-3, R-1		
Q.65 Match the terms fro	om group I to their d	lescriptions in group 11.		
Q.03 Materi				
Group I		Group II (1) Solute-disloca	tion interaction	
(P) Hall-Petch Effe	ect	(1) Solute-disloca	ultiplication	
(Q) Bauschinger E	ffect	(2) Dislocation m	at strengthening	
(R) Cottrell atmos	phere	(3) Grain boundar	lor compression	
(K) Comen and	January Carlotte	(4) Barrelling und	ier compression	
		(5) Mechanical h	ysteresis during	
		plasticity		
		m P 1 O 1 P 2		
(A) P-3, Q-5, R-1		(B) P-1, Q-4, R-3		
(C) P-5, Q-1, R-2		(D) P-3, Q-4, R-2	4	
	and making my left of	20	2 LI mol-1 and -220 kI	
Q.66 Enthalpy of forma	ation at 298 K, ΔH^0	of CO ₂ and PbO are -39	$C + C \rightarrow 2Ph + CO_2$ is	
mol ⁻¹ , respectivel	y. The enthalpy cha	nge for the reaction 2Pt	$O + C \rightarrow 2Pb + CO_2$ is	
			(D) 440 kJ	
(A) -173 kJ	(B) 15 kJ	(C) 47 kJ	(D)	
		Is how do the	fraction of proeutectoid	
O 67 In normalized hy	poeutectoid plain ca	arbon steels, now do the	fraction of proeutectoid	
ferrite (f) and vie	ld strength (oy) char	nge with increasing cart	oon content.	
ionite ()				
(A) f increases a	nd σ_v decreases			
(B) both f and σ_j	increase			
(C) both f and of	decrease			
(D) f decreases a	and a increases			
O 69 Identify the cor	rect statement abou	t manganese in steels fro	om the following.	
Q.68 Identity the cost	Transfer P			
(A) it decreases	hardenability			
(R) it makes the	steel susceptible to	hot-shortness		
(C) it is a strong	austenite stabilizer			
(D) it decreases	hardness of marten	site		
(D) it decreases				
		COUNTY OF THE PARTY OF THE PART		
		MT 12/20		

Q.69	released is	f copper is quenched fr		the amount of heat
		ic heat capacity of cop $10^{-3} T$, where T is ten		de la destación de la completa del completa de la completa de la completa del completa de la completa del la completa de la co
	(A) 9.37 kJ	(B) 15.87 kJ	(C) 18.74 kJ	(D) 22.68 kJ
Q.70	A suitable techniq	ue for monitoring a gr	owing crack in an allo	by is
	(A) acoustic emiss (B) radiography (C) magnetic parti (D) liquid penetral	cle technique		
		Common Data	a Ouestions	
omm	on Data for Quest			
Blas 2% S 0%C, last fu	t Furnace makes pigiO ₂ and 8% Al ₂ O ₃ . and 10% SiO ₂ . Turnace gas contains	g iron containing 3.6%. The coke rate is 1 kg. The flux rate is 0.4 kg.	g of coke per kg of per kg of pig iron, and O_2 . Assume that there	The ore is 80% Fe ₂ O pig iron, and it contained it is pure CaCO ₃ . The is no iron loss throug
Q.71	The weight of the	ore used per ton of pig	; iron is	
	(A) 3.0 tons	(B) 1.7 tons	(C) 1.0 tons	(D) 0.5 ton
Q.72	The weight of the	slag made per ton of p	ig iron is	
	(A) 821 kg	(B) 735 kg	(C) 633 kg	(D) 450 kg
Q.73	The volume (at N	ΓP) of the blast furnace	e gas produced per to	n of pig iron is
	(A) 3789 m ³	(B) 4256 m ³	(C) 5797 m ³	(D) 7234 m ³
1etal 1				ne specific heat capacity = 30 J K ⁻¹ mol ⁻¹ .
Q.74	The enthalpy chan 900 K is	ge, $\Delta H^{L \to S}$, associated	with the liquid-to-so	lid transformation at
	(A) -9 kJ mol ⁻¹	(B) -10 kJ mol ⁻¹	(C) -12 kJ mol ⁻¹	(D) -15 kJ mol ⁻¹
Q.75	The entropy chang K is	ge, $\Delta S^{L\to S}$, associated v	with the liquid-to-solid	d transformation at 900
	(A) 4.97 J K ⁻¹ mol (C) -5.34 J K ⁻¹ mo		(B) 0 J K ⁻¹ mol ⁻¹ (D) -8.95 J K ⁻¹ mol	ol -1

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 & 77:

The free energy change $\Delta G(r)$ accompanying the formation of a spherical cluster of radius rof solid from a liquid is given by

 $\Delta G(r) = 4\pi r^2 \gamma + \frac{4}{3}\pi r^3 \Delta G_v$, where γ is the interfacial energy and $\Delta G_v < 0$ is the free energy change per unit volume for the liquid-to-solid transformation.

Q.76 The size r^* , of the critical cluster is given by:

$$(A) \frac{-2\gamma}{\Delta G_v}$$

(B)
$$-\Delta G_{\nu}/2\gamma$$

(C)
$$-\pi \cdot \gamma / \Delta G$$

(A)
$$\frac{-2\gamma}{\Delta G_{\nu}}$$
 (B) $\frac{-\Delta G_{\nu}}{2\gamma}$ (C) $\frac{-\pi \cdot \gamma}{\Delta G_{\nu}}$ (D) $\frac{-\gamma}{(\pi \cdot \Delta G_{\nu})}$

If $\Delta G_v = 3.0 \times 10^7 \text{ J m}^{-3}$, and $\gamma = 3.3 \times 10^{-2} \text{ J m}^{-2}$, the number of atoms in the critical Q.77 cluster is approximately (Given: the solid is an FCC crystal with a lattice parameter of 0.495 nm)

Statement for Linked Answer Questions 78 & 79:

A fibre reinforced composite consists of Nylon 6,6 matrix with aligned and continuous carbon fibres. Their properties are:

Young's modulus of Nylon 6,6 = 3 GPa; Specific gravity of Nylon 6,6 = 1.14 Young's modulus of carbon fibre = 403 GPa; Specific gravity of carbon fibre = 1.90

The composite exhibits a Young's modulus of 103 GPa in the longitudinal direction Q.78 (parallel to the fibre orientation). The volume fraction of the fibre is

The specific Young's modulus of the same composite in the transverse direction Q.79 (perpendicular to the fibre orientation) is

Statement for Linked Answer Questions 80 & 81:

The density of α-iron (BCC) is 7882 kg m⁻³. The atomic weight of iron is 55.847 g/mol. A powder diffraction pattern is taken using X-rays of wavelength, $\lambda = 1.54$ Å

0.80 The lattice parameter of α-iron is

Q.81 The X-ray diffraction angle (20, in degrees) for the (110) set of planes is

Statement for Linked Answer Questions 82 & 83:

The overall reaction for electrolysis of Al₂O₃ is:

$$\frac{2}{3}Al_2O_3 + C = \frac{4}{3}Al + CO_2$$

The standard free energy change for this reaction at 1273 K is $\Delta G^{0}_{1273} = 452$ kJ. [Given: Faraday's Number = 96.5 kJ V⁻¹ eq.⁻¹]

- The standard EMF of the cell is
 - (A) -1.17 V
- (B) -1.21 V
- (C) -1.36 V
- (D) +1.56 V
- When the activity of alumina is 0.1, the EMF of this cell is 0.83
 - (A) -1.17 V
- (B) -1.21 V
- (C) -1.36 V
- (D) +1.21 V

Statement for Linked Answer Questions 84 & 85:

A single crystal of copper is oriented such that the tensile axis is parallel to the zone axis of the planes $(\overline{1}10)$ and $(\overline{1}\overline{1}1)$. The critical resolved shear stress for slip on the $\{111\}<110>$ slip system is 1 MPa.

- The zone axis is 0.84
 - (A) [112]
- (B) [111]
- (C) [001]
- (D) [110]
- If a tensile stress of 3 MPa is applied, slip will occur on which of the following slip Q.85 systems?
 - (A) $(1\,\overline{1}\,\overline{1})[0\,\overline{1}1]$
- (B) (111)[110]
- (C) $(111)[10\overline{1}]$ (D) $(1\overline{1}\overline{1})[101]$

END OF THE QUESTION PAPER