CS-13

ADCA / MCA (III Year)

Term-End Examination December, 2006

CS-13: OPERATING SYSTEMS

Time: 3 hours Maximum Marks: 75

Note: Question number 1 is **compulsory**. Answer any **three** questions from the rest.

- **1.** (a) What is spooling? Explain how this concept affects the system performance.
 - (b) List and explain at least four criteria that the schedulers use for optimization and performance improvement. Discuss the role of schedulers in implementation of multiple-level queues (MLQ) scheduling.
 - (c) For the following page reference string 0, 9, 0, 1, 8, 1, 8, 7, 8, 7, 1, 2, 8, 2, 7, 8, 2, 3, 8, 3

determine the number of page faults for the given page replacement algorithms with $3\ \text{frames}$:

- (i) FIFO
- (ii) LRU
- (iii) OPT (optimal)

6

4

7

P.T.O.

CS-13

1

(d) Classify all types of multiprocessor systems. Also explain why shared bus multiprocessors are generally regarded as having limited scalability.

7

6

6

- (e) What is the importance of ordering of events in distributed systems? Is ordering of events important in centralized systems as well? Explain.
- 2. (a) Consider the following three processes with the length of the CPU-burst time given in milliseconds :

Process	Burst Time	
P_1	8	
P_2	1	
P_3	2	

- (i) Draw Gantt charts showing the execution of these processes for the following scheduling policies:
 - (1) FCFS
 - (2) SJF
 - (3) Round-Robin (quantum = 1)
- (ii) Assuming that processes arrived in the order P_1 , P_2 , P_3 at time 0, determine waiting time and turnaround time of each process for the scheduling algorithms above.
- (b) Define program relocatability. Compare and contrast static and dynamic relocation. With the help of diagram, illustrate dynamic relocation. Describe the role of memory compaction in dynamic partitioning.

CS-13

3.	(a)	Define the terms mutual exclusion, critical section and semaphores. Write the producer – consumer code using semaphores.	8
	(b)	Differentiate reusable and consumable resources with example. Write deadlock detection algorithm and mention its time complexity.	7
4.	(a)	With example for each, describe the first-fit, best-fit and worst-fit strategies for determining free holes for allocation. Discuss the external and internal fragmentation problems in multiple partition allocation.	5
	(b)	With the help of a diagram, describe paging scheme. Describe how translation look-aside buffer helps in improvement of this strategy.	5
	(c)	In a paging system, if memory access time is 200 ns, time to search TLB is 20 ns and hit ratio is 90%, calculate the effective memory access time. Give relationship between page size, no. of page frames and memory capacity.	5
5	. (a)	asynchronous I/O ? Explain disk caching with its advantages.	6
	(b) Explain Access-Matrix Model of protection. Also discuss, how Bell-LaPadula flow control model is	(

9

based on it.