Statistics - 2010

M.Sc. Statistics (Option-I: Statistics & Option-II: Mathematics)

Option: I (Statistics)

1	 The	proba	bilit	vof	an (event	is:
П	 	2000	CARRE	,			

(a) a number

(b) a ratio

(c) neither a number nor a ratio

(d) none of the above

2. If f(x) has probability density cx^2 , $0 \le x \le 1$. The value of c is:

(a) zero

(b) one

(c) two

(d) three

3. The probability of throwing a total of 11 with 2 dice is:

(a) $\frac{1}{18}$

(b) $\frac{1}{0}$

(c) $\frac{1}{6}$

(d) $\frac{1}{2}$

4. It'P (A) denotes the probability of an event A. Then which one of the following is

(a) 0 ≥ P (A) ≥ 1

(b) $0 \le P(A) \le 1$

(c) $0 \le P(A) \le 1$

(d) none of the above

5. It is given that:

 $f(x) = 2x, 0 \le x \le 1$

= 0, otherwise

The probability that $1/4 \le x \le 1/2$ is

(a) 3

(b)

(c) 3

(d)

6. The density function

 $f(x) = \frac{1}{\beta - \alpha}, \alpha < x < \beta$

= 0, elsewhere

is known as:

(a) Rectangular distribution

(b) Pareto's distribution

(c) Log-normal distribution

(d) Beta distribution

9.	If X_1 and X_2 be two independent Poisson variates with parameters λ_1 and λ_2 respectively, then :		
	(a) $X_1 + X_2$ and $X_1 - X_2$ also follow Poisson distribution		
	(b) $X_1 + X_2$ and $X_1 - X_3$ do not follow Poisson distribution		
	(c) $X_1 + X_2$ and not $X_1 - X_3$, follow Poisson distribution	-	
	(d) $X_1 - X_2$ and not $X_1 + X_2$, follow Poisson distribution		
10.	Let X be random variable that follows a gamma distribution with parameter $\beta,$ the pdf is given as :		
	$f(x) = \frac{\exp(-x)x^{\mu}}{\Gamma(\beta)}, \beta > 0, x > 0$		
	Then as $\beta \to \infty$, gamma distribution tends to		
	(a) Normal distribution		

(d) none of the above

(b) $1 + 1/\theta$

(d) None

For a normal distribution $N(\mu, \sigma^2)$ the odd central moments are all :

8. Let X be a random variable with cumulative distribution function $F(x) = 1 - e^{-x\theta}$,

11. A random variable X is gamma distributed with $\alpha = 3$ and $\beta = 2$. The value of

(c) neither ones nor zeros

 $0 \le x \le \alpha$. The mean of X is:

(a) 1/θ(c) 1/θ

(a) Primary

 $P(X \le 1)$ is:

(a) $\frac{13}{18e}$

(c) $1 - \frac{13}{8e}$

(b) Secondary

(c) List value

(b) Uniform distribution(c) Geometric distribution(d) Cauchy distribution

(d) Collection

(a) interpreted (b) collective (c) summarized (d) classified 14. A given data has mean = 6.5, median = 6.3 and mode = 5.4. It represents: (a) leptokurtic distribution (b) symmetrical distribution (c) negatively skewed distribution (d) positively skewed distribution 15. The variance of following numbers 15. 25, 5, 10, 30 is equal to: (a) 50.20 (b) 9.27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± \frac{5}{3} (b) ± \frac{3}{5} (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above	13.	The qua	ntitative facts in descriptive statist	ics are r	not:			
14. A given data has mean = 6.5, median = 6.3 and mode = 5.4. It represents: (a) leptokurtic distribution (b) symmetrical distribution (c) negatively skewed distribution (d) positively skewed distribution 15. The variance of following numbers 15, 25, 5, 10, 30 is equal to: (a) 50.20 (b) 9.27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) median (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above		(a)	interpreted	(b)	collective			
(a) leptokurtic distribution (b) symmetrical distribution (c) negatively skewed distribution (d) positively skewed distribution 15. The variance of following numbers 15, 25, 5, 10, 30 is equal to: (a) 50,20 (b) 9,27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) median (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± \frac{5}{3} (b) ± \frac{3}{5} (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above		(c)	summarized	(d)	classified			
(a) leptokurtic distribution (b) symmetrical distribution (c) negatively skewed distribution (d) positively skewed distribution 15. The variance of following numbers 15, 25, 5, 10, 30 is equal to: (a) 50,20 (b) 9,27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) median (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± \frac{5}{3} (b) ± \frac{3}{5} (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above	14.	A given data has mean = 6.5, median = 6.3 and mode = 5.4. It represents:						
(c) negatively skewed distribution (d) positively skewed distribution 15. The variance of following numbers 15, 25, 5, 10, 30 is equal to: (a) 50.20 (b) 9.27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5/5 (e) ± 3 (d) ± 5 When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above								
(a) 50.20 (b) 9.27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above		(c)	negatively skewed distribution	(d)	positively skewed distribution			
(a) 50.20 (b) 9.27 (c) 430 (d) 86 16. The second quartile position is also known as: (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above	15.	The var	iance of following numbers 15, 2	5, 5, 10	, 30 is equal to :			
 16. The second quartile position is also known as: (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ±5/3 (b) ±3/5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 								
 (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 10. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel		(c)	430	(d)	86			
 (a) medjan (b) mode (c) standard deviation (d) variance 17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 10. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 31. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel	16.	The sec	ond quartile position is also know	n as:				
17. For a grouped data, which of the following is rarely used? (a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel					mode			
(a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel		(c)	standard deviation	(d)	variance			
(a) quartile deviation (b) standard deviation (c) arithmetic mean (d) average deviation 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 =0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel	17.	For a grouped data, which of the following is rarely used?						
 18. If the coefficient correlation is equal to zero, then the standard error is equal to: (a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ±5/3 (b) ±3/5 (c) ±3 (d) ±5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel 				(b)	standard deviation			
(a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel		(c)	arithmetic mean	(d)	average deviation			
(a) one (b) zero (c) greater than one (d) none of the above 19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel	18.	If the coefficient correlation is equal to zero, then the standard error is equal to:						
19. Given the regression equations y on x: 8x - 10y + 66 = 0 and x on y: 40x - 18y = 214. The correlation coefficient between x and y is: (a) ± 5/3 (b) ± 3/5 (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel				(b)	zero			
y: $40x - 18y = 214$. The correlation coefficient between x and y is: (a) $\pm \frac{5}{3}$ (b) $\pm \frac{3}{5}$ (c) ± 3 (d) ± 5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ± 1 , the lines of regression are: (a) coincident (b) parallel		(c)	greater than one	(d)	none of the above			
(c) ±3 (d) ±5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel	19.	Given the regression equations y on x: $8x - 10y + 66 = 0$ and x on y: $40x - 18y = 214$. The correlation coefficient between x and y is:						
(c) ±3 (d) ±5 20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel			5	71-3				
20. When the coefficient of correlation is zero, the lines of regression are: (a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel		(a)	$\pm \frac{1}{3}$	(0)	5			
(a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel		(c)	±3	(d)	±5			
(a) coincident (b) parallel (c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel	20.	When	the coefficient of correlation is zer	o, the li	nes of regression are:			
(c) at right angles (d) none of the above 21. When the coefficient of correlation is ±1, the lines of regression are: (a) coincident (b) parallel								
(a) coincident (b) parallel				(d)	none of the above			
(a) coincident (b) parallel	21.	When the coefficient of correlation is ±1, the lines of regression are:						
				(d)	at right angles			

22.	The following frequencies are of the positive order: (A) = 40, (B) = 60, (AB) = 30, N = 130. Then the value of $(\alpha\beta)$ is:					
	(a)	A STATE OF THE PARTY OF THE PAR	(b)	70		
	(c)	30	(d)	60		
23.		owing frequencies are of Then Aβ is equal to:	the positive ord	er: $(A) = 50$, $(B) = 30$, $(AB) = 20$,		
	(a)	80	(b)	30		
	(c)	120	(d)	140		
24.	The cur	ve which is very highly po	eaked and has th	ne value of $\beta > 3$ are called:		
	(a)	mesokurtic	(b)	leptokurtic		
	(c)	platykurtic	(d)	all of these		
25.	When fr	requency distribution is no	ot symmetrical a	about the mean it is said to be:		
	(a)	kurtosis	(b)	moment		
	(c)	skewed	(d)	none of these		
26.		nfinite population, the fact		oroximately:		
		greater than one	19.00	none		
27.	The standard deviation of a simple random sample mean \bar{x} taken from an infinite population is :					
	(a)	$\sigma\sqrt{n}$	(b)	σn		
	(a)	<u>σ</u>	(4)	$\frac{\sigma}{n}$		
	(c)	\sqrt{n}	(u)	n		
28.	The star	ndard error of sample me	an \bar{x} is equal to			
		$Var(\bar{x})$	(b)	$\{\operatorname{Var}(\overline{x})\}^2$		
	(c)	$\{ \text{Var} (\bar{x}) \}^{1/2}$	(d)	$\{\operatorname{Var}(\overline{x})\}^{1/3}$		
29.	In randomized block design, how many treatments can be adopted without any loss of efficiency?					
	(a)	10	(b)	15		
	(c)	18	(d)	20		

30.	An infinite population has a variance of 36 and a mean of 96. A sample of 4 items is taken. The standard deviation of the sample distribution is:					
		18		1.5		
	(c)	3.0	(d)	9		
31.	Systema	itic sample :				
		gives more reliable results than				
	(b)	gives less reliable results than a		The state of the s		
	(c)	sample	re reliab	le or reliable results than a random		
	(d)	none of the above				
32.		OVA is a tool by which total varia nable component was defined by		y be split up into several physically		
	(a)	Karl Pearson	(b)	R.A. Fisher		
	(c)	Horace Secrist	(d)	A.L. Bowley		
33.	When the fertility gradient of the field is in one direction, which design is appropriate?					
		CRD		LSD		
	(c)	RBD	(d)	SPD		
34.	When the fertility gradient of the field goes in two directions, which design is most appropriate?					
	(a)	Augmented design	(b)	CRD		
	(c)	LSD	(d)	SPD		
35.	If there are 5 treatments with 4 replication to each, the error degree of freedom for CRD will be:					
	(a)	15	(b)	20		
	(c)	12	(d)	9		
36.	The non-parametric test used for two independent samples is:					
	4000	t-test	9 . 4	z-test		
	(c)	F-test	(d)	Mann Whitney U-test		
37.	For the comparison of two correlated samples under non-parametric alternative to paired F-test is:					
		z-test		F-test		
	1000	Wilcoxon Signed-ranked test	7.15	V-valed Wellin II toot		

39.	The regression coefficient is independent of change of:							
	(a)	origin	(b)	scale				
	(c)	both A and B	(d)	none of these				
40.	The hyp	The hypothesis of no difference is known as:						
	(a)	Simple hypothesis	(b)	Null hypothesis				
	(c)	Composite hypothesis	(d)	Alternative hypothesis				
41.	Iftisac	onsistent estimator of θ , then:						
	(a) t^2 is also a consistent estimator of θ							
	(b)	t is also a consistent estimator of	θ^2					
	(c)	t2 may or may not be a consistent	estim	ator of θ^2				
		t ² is also a consistent estimator of						
42.	Ifa=(a	+a,)/2, where a, and a, are both n	nost ef	fficient with variance S2, and p, is				
		elation coefficient between a, and a						
		$(1 + p) S^2$		$(1+p) S^2/2$				
	(c)	ρ S ² /2	(d)	none				
43.	For given observed random samples 2, 1, 4, 5. The point estimates of the parameters of μ and σ^2 is a $N(\mu, \sigma^2)$ are :							
	(a)	$\frac{10}{3}$.3	(b)	$3.\frac{10}{3}$				
	(c)	$4.\frac{10}{3}$	(d)	$3.\frac{10}{4}$				
44.	An unbi	ased estimator:						
	(a)	will always be consistent	(b)	will not be consistent				
		may or may not be consistent	(d)	none of the above				
45.	For the	Poisson parameter:						
	(a)	$\frac{1}{\overline{x}}$ is a consistent estimator of $\frac{1}{\theta}$	(b)	$\frac{1}{x}$ is a consistent estimator of $\frac{1}{\theta}$				
	(c)	x is a consistent estimator of $\frac{1}{\theta}$	(d)	none of the above				
ELV	W-6741			7				

|Turn over

38. Which test is applied for the test of significance between the two variances?

(a) t-test

(c) Chi-square test

(b) z-test

(d) F-test

6.	A large population has a mean of 3.25 cm and standard deviation of 2.61 cm.					
	A sampl	le of 900 items has a mean of	3.45 cm. Th	ne value of Z is equal to:		
	(a)	1.7	(b)	1.8		
	(c)	2.3	(d)	2.8		
17.	The pro	bability of type-I error is know	wn as :			
	(a)	test of significance	(b)	level of significance		
	(c)	composite hypothesis	(d)	none of these		
18.	Fortest	of goodness of fit, which test	is used?			
	(a)	t-test	(b)	F-test		
	(c)	z-test	(d)	Chi-square test		
19.	For con	nparison of two means from ir	ndependent	samples which test is applicable?		
	(a)	t-test	(b)	F-test		
	(c)	z-test	(d)	Chi-square test		
50.		we want average of rates of cha al tendency is suitable?	ange or ratio	or index number, which measure		
	(a)	geometric mean	(b)	mode		
	(c)	arithmetic mean	(d)	median		
51.	If two a	attributes A and B such that ($(AB) > \frac{(A)}{2}$	(B), they are said to be:		
	(a)	negatively associated	(b)	positively associated		
		not associated	(d)	none		
52.	If A and B attributes are independent, the value of \u03c4 the coefficient of colligation is					
		+1		-1		
	(c)	zero	(d)	none		
			9.0			

53. For the following linear programming problem (LPP)

Max
$$Z = 2x_1 + 3x_2$$

subject to $x_1 + x_2 \le 1$
 $3x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

The basic feasible solution is

(a)
$$x_1 = 1, x_2 = 1$$

(b)
$$x_1 = 0, x_2 = 1$$

(a)
$$x_1 = 1, x_2 = 1$$

(c) $x_1 = 0, x_2 = 0$

54.	The best average for constructing an index number is:								
	(a)	harmonic mean	(b)	arithmetic mean					
	(c)	geometric mean	(d)	none of these					
55.	Fisher's ideal index number is:								
	(a)	the arithmetic mean of Laspeyre's	and F	Paasche's index numbers					
	(b)	(b) the median of Laspeyre's and Paasche's index numbers							
	(c)	the geometric mean of Laspeyre's	and I	Paasche's index numbers					
	(d)	none of the above							
56.	Laspeyr	e's formula does not obey:							
	(a)	Circular test	(b)	Time reversal test					
	(c)	Factor reversal test	(d)	None of these					
57.	The factor reversal test is satisfied by:								
	(a)	Simple aggregative index number	(b)	Laspeyre's index number					
	(c)	Paasche's index number	(d)	None					
58,	Crude death rate, expressed simply as a ratio, provided:								
	(a) the probability of babies born and died during the year under reference								
	(b)	(b) the probability of a foetal death during the year under reference							
	(c)	the probability of dying of a perso	n dur	ing the year under reference					
	(d)	all the above							
59.	The death rate obtained for a segment of a population is known as:								
	(a)	specific death rate	(b)	crude death rate					
	(c)	standardized rate	(d)	vital index					
60.	Fertility rates mainly depend on:								
	(a)	total female population							
	(b)	(b) total population							
	(c)	(c) female population of child bearing age							
	(d)	number of newly born babies							