STATISTICS

1. If $P(A \cup B) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{3}$ and $P(\overline{B}) = \frac{1}{2}$, then $P(\overline{A})$ is:

- (A) $\frac{1}{6}$
- (B) $\frac{2}{3}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{3}$

2. The event $\overline{A \cup B}$ is equivalent to the event :

- (A) $\overline{A \cap B}$
- (B) $\bar{A} \cap B$
- (C) $A \cap \overline{B}$
- (D) $\bar{A} \cap \bar{B}$

3. If P(A) = 0.5, P(B) = 0.3 and $P(A \cap B) = 0.1$, then $P(A \cup B)$ is :

- (A) 0.7
- (B) 0.15
- (C) 0.8
- (D) 0.9

1

- 4. If f(x) has probability density function kx^2 , 0 < x < 1, then k is:
 - (A) Zero
 - (B) $\frac{1}{2}$
 - (C) 3
 - (D) 1
- 5. A random variable X takes values 1, 2 and 4 with probabilities $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$, then the mathematical expectation of $\frac{1}{X^2}$ is:
 - (A) $\frac{17}{64}$
 - (B) $\frac{25}{64}$
 - (C) $\frac{27}{64}$
 - (D) $\frac{39}{64}$
- 6. The moment generating function of a normal variate X is:

$$M_x(t) = \exp(2t + 32t^2)$$

then $E(X^2)$ is:

- (A) 32
- (B) 20
- (C) 15
- (D) 68

7. If X and Y are two independent Poisson varietes such that

$$P(X = 0) = P(X = 1)$$

and
$$P(Y = 1) = P(Y = 2)$$

Then variance of 3X - Y is:

- (A) 10
- (B) 11
- (C) 36
- (D) None of the above

8. The mean of a Binomial distribution is 20 and the standard deviation is 4.

Then n is:

- (A) 200
- (B) 75
- (C) 100
- (D) 150

9. The mean of beta distribution of first kind $\beta_1(\alpha, \beta)$ is :

- $(A) \qquad \frac{1}{\alpha + \beta}$
- (B) $\alpha + \beta$
- (C) $\frac{\beta}{\alpha + \beta}$
- $(D) \qquad \frac{\alpha}{\alpha + \beta}$

10.	If X	It is uniformly distributed in $-2 \le x \le 2$, then $P(X \le 1)$ is:
	(A)	3
	(B)	$\frac{1}{4}$
	(C)	$\frac{1}{2}$
27	(D)	Zero
11.	Whi	ch of the following is a non-dimensional diagram?
	(A)	Bar diagram
	(B)	Pie diagram
	(C)	Cylinder
	(D)	A graph
12.	Ogiv	es for 'more than' type and 'less than' type distributions interesect at :
	(A)	mean
	(B)	median
	(C)	mode
	(D)	origin
Stat.		4

13.	The	correct relationship between A.M., G.M., and H.M. is:
	(A)	A.M. = G.M. = H.M.
	(B)	$G.M. \geq A.M. \geq H.M.$
	(C)	$H.M. \geq G.M. \geq A.M.$
	(D)	$A.M. \geq G.M. \geq H.M.$
14.	The	average of the 7 numbers 7, 9, 12, x , 5, 4, 11, is 9. The missing number
	x is	
	(A)	13
	(B)	14
	(C)	15
	(D)	8
15.	If co	rrelation coefficient between the variables \boldsymbol{X} and \boldsymbol{Y} is $\boldsymbol{\rho}$, the correlation
	coeff	icient X^2 and Y^2 is :
	(A)	ρ
	(B)	ρ^2
	(C)	Zero
	(D)	One

- 16. The value of the correlation ratio varies from :
 - (A) -1 to +1
 - (B) -1 to zero
 - (C) Zero to one
 - (D) Zero to infinity
- 17. Given the two lines of regression as 3X 4Y + 8 = 0 and 4X 3Y = 1, the means of X and Y is:
 - (A) $\overline{X} = 4$, $\overline{Y} = 5$
 - (B) $\overline{X} = 3$, $\overline{Y} = 4$
 - (C) $\overline{X} = \frac{4}{3}, \overline{Y} = \frac{5}{4}$
 - (D) None of the above
- 18. The range of multiple correlation coefficient R is :
 - (A) Zero to one
 - (B) Zero to infinity
 - (C) -1 to +1
 - (D) ∞ to +∞

19.	Give	en (A) = 95, (Ab) = 35, (B) = 150, N = 200 and (AB) = 60, then class
	frequ	nency (ab) is equal to:
	(A)	35
	(B)	90
	(C)	15
	(D)	105
20.	The	class frequencies (A) = 90, $N = 100$, (B) = 70 and (Ab) = 40 reveal that
	the o	data are:
	(A)	consistent
	(B)	inconsistent
	(C)	insufficient
	(D)	None of the above
21.	Degr	ee of freedom for chi-square in one of the contingency table of order
	(4 ×	3) is:
	(A)	12
	(B)	9
	(C)	8
	(D)	6

22.	If al	the frequencies of classes are same, the value of chi-square is :
	(A)	1
	(B)	00
	(C)	Zero
	(D)	None of the above
23.	The	mean difference between 9 paired observations is 15 and the standard
	devia	ation of differences is 5. The value of statistic t is :
	(A)	27
	(B)	9
	(C)	3
	(D)	Zero
24.	The	degree of freedom for statistic t for paired t-test based on pairs of
	obse	rvations is :
	(A)	2(n-1)
	(B)	n-1
	(C)	2n-1
	(D)	None of the above
Stat.		8

25.	A sample of 12 specimens taken from a normal population is expected to have
	a mean 50 gm/cc. The sample has a mean 64 mg/cc with a variance of 25.
	To test H_0 : μ = 50 against H_1 : μ ≠ 50, you will use :
	(A) Z-test
	(B) χ^2 -test
	(C) F-test
	(D) t-test
26.	To test a hypothesis about proportion of items in a class, the usual
	test is:
	(A) t-test
	(B) F-test
	(C) Z-test
	(D) None of the above
27.	Level of significance is the probability of:
	(A) type I error
	(B) type II error
	(C) not committing error
	(D) any of the above

28.	Let	x_1, x_2, \dots, x_n be a random sample from a distribution which is con-
	tìnu	ous in the vicinity of the median θ . Then to test the hypothesis that
	θ =	θ_0 (some specified value) against alternative hypothesis may be two
	side	d, one can use :
	(A)	Sign test
	(B)	Run test
	(C)	Mood's test
	(D)	Mann-Whitney U-test
29.	Whic	h one of the following tests uses information on signs as well as magnitudes
	for to	esting for the median of a distribution ?
	(A)	Sign test
R	(B)	Wilcoxon Signed rank test
	(C)	Mood's test
	(D)	Sukhatme's test
Stat.	93	10

30.	Given the frequency function $f(x) = \frac{1}{\theta}$, $0 \le x \le \theta$, we are testing the hypothesis							
	$H_0: \theta = 1$ against $H_1: \theta = 2$ by means of a single observation. We reject							
	the hypothesis if $x > 0.5$, then probability of type first error is:							

- (A) 0.5
- (B) 0.75
- (C) 0.25
- (D) 0.6

31. If the sample values be 1, 3, 5, 7, 9 the standard error of the sample mean is:

- (A) $\sqrt{2}$
- (B) $1/\sqrt{2}$
- (C) 2
- (D) $\frac{1}{2}$

32. In which one of the following procedures, the allocation is based on the stratum size and the stratum variation?

- (A) Neyman allocation
- (B) Proportional allocation
- (C) Equal allocation
- (D) Optimum allocation

33.	Let N be the number of units in a population and n be the number of units
	to be selected for a sample, then with simple random sampling with replacement
	one can get:
	(A) NC _n possible samples
	(B) nN possible samples
	(C) N^n possible samples
	(D) $^{N}P_{n}$ possible samples
34.	If $N = nk$, then the sampling procedure thus emerges is precisely known
	as:
	(A) Systematic random sampling
	(B) Linear systematic sampling
	(C) Circular systematic sampling
	(D) Two-dimensional systematic sampling
35.	If the regression of Y on X is perfectly linear then the variance of regression
	estimate is:
100	(A) Zero
	(B) One
	(C) Between zero and one
	(D) Greater than one
Stat.	12

•

36.	In	one-way	classification,	the	test	statistic	F	is	:	
-----	----	---------	-----------------	-----	------	-----------	---	----	---	--

(A)
$$\frac{S.S. Treatments}{S.S. Errors}$$

(C)
$$\frac{S.S. Errors}{S.S. Total}$$

(D)
$$\frac{\text{M.S.S. Errors}}{\text{M.S.S. Total}}$$

37. In a randomized block of t treatments and b blocks, the degree of freedom for experimental error is:

(A)
$$(b-1)(t-1)$$

(B)
$$(bt - 1)$$

(D)
$$b(t-1)$$

38. When the variability of the strata is equal then the allocation is :

- (A) Proportional
- (B) Optimal
- (C) Minimal
- (D) Equal

39.	The	total nu	mber of	possible a	rranger	nent in 4 >	4 Latin squ	are is :
	(A)	96						
	(B)	144						
	(C)	576						
	(D)	288						
40.	Esti	mate the	missing	value in	the foll	owing leas	t square desi	gn :
			Α	\mathbf{c}	В	D		
			12	19	10	8		
			C	В	D	A		
			18	12	6	m		
			В	D	A	C		
			22	10	5	2		
			D	A	C	В		
			12	7	27	17		
	(A)	3						
	(B)	12						
	(C)	6						

(D)

2

- 41. If X and Y are a random sample from a population $N(\mu, \sigma^2)$, then efficiency of $T = \frac{X + 2Y}{3}$ with respect to \overline{x} is :
 - (A) $\frac{5}{9}$
 - (B) $\frac{9}{10}$
 - (C) $\frac{3}{5}$
 - (D) $\frac{1}{3}$
- 42. Let X, Y and Z are three random samples from a normal population with known mean μ . If $T=3X+Y+\lambda Z$ is an unbiased estimator of μ , then λ is :
 - (A) -3
 - **(B)** −1
 - (C) 1
 - (D) 3

- 43. The maximum likelihood estimator of θ for the population $f(x) = \frac{1}{\theta}$, $0 \le x \le \theta$ is:
 - (A) \(\overline{x}\)
 - (B) Median of x_i
 - (C) Minimum x_i
 - (D) Maximum x_i
- 44. The minimum variance unbiased estimator (MVUE) for θ in the distribution with pdf $f(x, \theta) = \frac{1}{\theta} \exp(-x/\theta), x > 0$ is :
 - (A) <u><u>x</u></u>
 - (B) $\sum_{n} x_i^2$
 - (C) $x_{(1)}$
 - (D) $x_{(n)}$
- 45. Type II error is associated with the :
 - (A) rejection of null hypothesis when it is true
 - (B) rejection of null hypothesis when it is false
 - (C) acceptance of null hypothesis when it is false
 - (D) acceptance of null hypothesis when it is true

46.	Powe	r of the test is related to:
	(A)	type I error
	(B)	type II error
	(C)	type I and II errors both
	(D)	None of the above
47.	In se	equential probability ratio test (SPRT), the sample size is:
	(A)	fixed
	(B)	fixed but small
	(C)	fixed but large
	(D)	A random variable
48.	Sequ	nential probability ratio test (SPRT) initiated by :
	(A)	R.A. Fisher
	(B)	A. Wald
	(C)	G.W. Snedecor
	(D)	Thomas Bayes

Non	parametric methods are based on :						
(A)	mild assumption						
(B)	stringent assumption						
(C)	no assumption						
(D)	None of the above						
Ordi	nary Sign test considers the difference of observed	values	from	the			
hypothetical median value in terms of:							
(A)	Sign only	83					
(B)	Magnitude only						
(C)	Sign and magnitude both						
(D)	None of the above						
A tin	ne series consists of :						
(A)	two components						
(B)	three components						
(C)	four components						
(D)	five components						
	18						
	(A) (B) (C) (D) Ordi hypo (A) (B) (C) (D) A tin (A) (B) (C)	 (B) stringent assumption (C) no assumption (D) None of the above Ordinary Sign test considers the difference of observed hypothetical median value in terms of: (A) Sign only (B) Magnitude only (C) Sign and magnitude both (D) None of the above A time series consists of: (A) two components (B) three components (C) four components (D) five components 	 (A) mild assumption (B) stringent assumption (C) no assumption (D) None of the above Ordinary Sign test considers the difference of observed values hypothetical median value in terms of : (A) Sign only (B) Magnitude only (C) Sign and magnitude both (D) None of the above A time series consists of : (A) two components (B) three components (C) four components (D) five components 	 (A) mild assumption (B) stringent assumption (C) no assumption (D) None of the above Ordinary Sign test considers the difference of observed values from hypothetical median value in terms of: (A) Sign only (B) Magnitude only (C) Sign and magnitude both (D) None of the above A time series consists of: (A) two components (B) three components (C) four components (D) five components 			

52.	For	the given values 15, 24, 18, 33, 42, the three years moving	average
22	are	:	
12	(A)	19, 22, 33	
	(B)	19, 25, 31	
	(C)	19, 30, 31	
	(D)	None of the above	
53.	Mars	shal and Edgeworth price index number formula utilizes the	weights
	as:		
	(A)	quantities of base year	
	(B)	quantities of given year	
	(C)	combined quantities of base and given year	
	(D)	any of the above	
54.	Index	x numbers are expressed :	
2.	(A)	in percentages	
	(B)	in ratios	
	(C)	in terms of absolute value	
	(D)	all the above	
Stat	•	19	P.T.O.

55.	Registration of vital statistics is organized at the apex by :				
	(A)	Director General			
	(B)	Registrar General			
	(C)	Census Commissioner			
	(D)	All the above			
56.	The age specific death rate for the babies of age less than one year is specifically				
	calle	d:			
	(A)	neonatal			
	(B)	infant mortality rate			
	(C)	material mortality rate			
	(D)	foetal death rate			
57.	Ifμa	If μ and σ are the process mean and S.D. then control limits $\mu\neq3\sigma$ are known			
	86 :				
	(A)	modified central limits			
	(B)	natural central limits			
	(C)	specified central limits			
	(D)	None of the above			

- 58. The probability of accepting a lot with fraction defective P, is known as :
 - (A) consumer's risk
 - (B) type I error
 - (C) producer's risk
 - (D) None of the above
- 59. For the following linear programming problem (LPP)

$$\mathbf{Max}. \ \mathbf{Z} = 2x_1 + 3x_2$$

s.t.
$$x_1 + x_2 \le 1$$

$$3x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

The basic feasible solution is:

- (A) $x_1 = 1, x_2 = 1$
- (B) $x_1 = 0, x_2 = 1$
- (C) $x_1 = 0, x_2 = 0$
- (D) None of the above
- 60. To determine the optimum levels of advertising, sales force and price for maximizing profits, we shall use:
 - (A) Inventory model
 - (B) Multiple regressions analysis
 - (C) Linear programming
 - (D) Waiting time theory