2/6/12 Code: A-20 **JUNE 2008** Code: AE25 Subject: PHYSICAL ELECTRONICS AND Time: 3 Hours SOLID STATE DEVICES Max. Marks: 100 **NOTE:** There are 9 Questions in all. - Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else. - Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. | .1 | Choose the correct or best alternative in the following: | | | | | | |----|--|--|--|-----------------------|---|--| | | a. | SIP, DIP, ZIP, PGA are the tech | niques of | | | | | | | (A) IC packaging. (B) Logical expressions reduction (C) Arrangement of logic gates of (D) IC fabrication. | | | | | | | b. | 'Latch up' effect is due to the presence of | | device on the CMOS IC | 2 | | | | | (A) FET.(C) BJT. | (B) Thyristor.(D) PN diode. | | | | | | c. Varactor diode makes use of voltage variable capacitance of a | | | | | | | | | (A) FB PN junction.(B) Unbiased PN junction.(C) RB PN junction.(D) Intrinsic semiconductor. | | | | | | | d. | Lasing action requires | | | | | | | | (A) Stimulated emission.(C) Both (A) & (B). | (B) Population(D) Only (A). | inversion. | | | - e. Fermi level indicates - (A) Probability of finding electrons. - **(B)** Probability of finding holes. - **(C)** Energy level of conduction band. - (D) Energy level of valence band. 2/6/12 Code: A-20 | | t. | t. Heterogeneous junctions are junctions between materials having different | | | | |-----|----|--|--|----|--| | | | (A) Electron densities. | | | | | | | (B) Energy band gaps. | | | | | | | (C) Hole densities. | | | | | | | (D) Fermi levels. | | | | | | g. | The Collector-Emitter voltage | of a CE transistor is high in | | | | | | (A) Saturation state. | (B) Active state. | | | | | | (C) Cut-off state. | (D) Unbiased state. | | | | | h. | 'Early effect' refers to | | | | | | | (A) Collector narrowing. | (B) Emitter narrowing. | | | | | | (C) Gate narrowing. | (D) Base narrowing. | | | | | i. | Which of these devices exhibit negative resistance in their V-I characteristics? | | | | | | | (A) IMPATT Diode | (B) Tunnel diode | | | | | | (C) Gunn diode | (D) All of these | | | | | j. | j. Which of these devices is used in TV cameras? | | | | | | | (A) JFETs | (B) CCDs | | | | | | (C) MOSFETs | (D) BJTs | | | | | | | | | | | | | • | E Questions out of EIGHT Questions. question carries 16 marks. | | | | | | | • | _ | | | Q.2 | a. | List the advantages of Integrat | ion. (8) | | | | | b. | Compare the Thin film and Th | ick film process of semiconductor device fabrication. (8) | | | | Q.3 | | Describe with neat diagra | ms the V-I characteristics of Tunnel diode and Gunn diode, giv | æ | | | Q.o | | reasons for negative resistance | _ | | | | Q.4 | a. | Describe with a neat diagram | he equivalent circuit of a MOSFET. (10) | | | | | | - | 10 0 | | | | | | b. An n ⁺ poly si | licon SiO ₂ – Si p-channel device has $N_d = 10^{16}$ cm ⁻³ and | 1 | | | | | $Q_i = 5 \times 10^{10} \text{qC/cm}^2$, n | $_{\rm i} = 1.5 \times 10^{10} {\rm cm}^{-3}$, $\varepsilon_{\rm r}$ of SiO ₂ = 3.9, thickness of | f | | | | | $SiO_2 = 100 \text{A}^{\circ} \Phi_{ms} = -0.3$ | 25V, Calculate V _T for a gate oxide thickness of 0.01 μ m ar | ıd | | | | | repeat for a field oxide thickne | | | | 2/6/12 | 2 | Code: A-20 | |------------|---| | Q.5 | a. Draw the schematic band diagrams for (i) intrinsic (ii) n-type (iii) p-type semiconductor materials, showing density of states, Fermi levels and carrier concentrations at thermal equilibrium. (9) | | | b. A Si sample is doped with 10^{17} As atoms/cm ³ . What is the equilibrium hole concentration p_0 at 300K? Where is E_F relative to E_i ? Show the resulting band diagram. (7) | | Q.6 | a. Describe Hall effect, with a neat diagram. Develop an expression for Hall Voltage. (10) | | | b. A Si sample is doped with 10^{17} Phosphorous atoms / cm 3 , What is its resistivity? Find the half voltage for a sample of thickness $100\mu m$, if $I_x = 1 mA$ and $B_z = 10^{-5} Wb/cm^2$, $\mu_n = 700 cm^2/V - s$. (6) | | Q.7 | a. Explain Metal–Semiconductor junctions. How does it differ from Semiconductor-Semiconductor junctions? | | | b. Describe the switching action of a Diode for a square wave input voltage. Draw the diode current waveform. | | Q.8 | a. Define the following parameters of a BJT: Emitter injection efficiency, collector efficiency, base transport factor, current gain. | | | b. Explain various high frequency limitations of BJT.(8) | **Q.9** Write short notes on:- (i) (ii) (iii) (iv) Heterojunctions. LASERS. Thermal effects in BJTs. Short channel effects in MOSFETs. (16)