2/12/12 Code: A-20

AMIETE - ET (OLD SCHEME)

Code: AE27
Time: 3 Hours

JUNE 2009

Subject: DIGITAL HARDWARE DESIGN Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. An electronic circuit in which a state switches between two distinct states when there is a change in the input states or conditions is called
 - (A) Digital circuit.

(B) Analog circuit.

(C) Mixed circuit.

- **(D)** None of the above.
- b. If an entity is a gate level model with a rise and fall delay, values for the rise and fall delays could be passed into the entity using
 - (A) Driver.

(B) Bus.

(C) Generics.

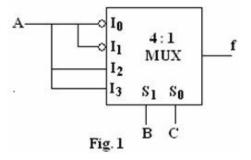
(D) Process.

- c. VHDL stands for
 - (A) Verilog Hardware Description Language.
 - (B) Very High Speed Digital Language.
 - (C) Versatile Hardware Description Language.
 - (D) Very High Speed Integrated Circuit Hardware Description Language.
- d. The ASSERT statement in VHDL checks the value of a
 - (A) Boolean Expressions.
- **(B)** Complex Expressions.

(C) Textual String.

- **(D)** Both **(A)** and **(B)**.
- e. In an VHDL, signal represents the
 - (A) Interconnection wires.
- (B) Components.

(C) Ports.


(D) Temporary data.

- f. $(XY)_5 = (YX)_4$, then
 - (A) X=4, Y=3.

(B) X=4, Y=3.

(C) X=6, Y=3.

(D) X=3, Y=4.

g. Implementation of a switching function through a 4:1 MUX is shown in Fig.1. Identify the switching function

2/12/12 Code: A-20

- (A) $\Sigma(0,1,6,7)$
- **(B)** $\Sigma(2,4,6,7)$
- (C) $\Sigma(1,3,5,6)$
- **(D)** $\Sigma(4,5,6,7)$
- h. If M(H) and $M(\overline{H})$ denote the convex hulls of the sets of True and False vertices of a function H respectively, then if $M(H) \cap M(\overline{H}) = \emptyset$, where \emptyset denotes the empty set, then the said function is
 - (A) Threshold function.
- **(B)** Symmetric function.

(C) Unate function.

- (D) Walsh function.
- i. An N-bit Jhonson counter generates a counting sequence of length.
 - **(A)** N/2

(B) 1

(C) N

(D) 2N

- j. In FPLA
 - (A) Only AND arrays are programmable.
 - **(B)** Only OR arrays are programmable.
 - **(C)** Both the AND array and the OR array are programmable.
 - **(D)** None of these are programmable.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. List the advantages and disadvantages of a digital circuit over an analog circuit. (4)
 - b. Prove X + (Y Z) = (X + Y)(X + Z) = (X + Y)(X + Y + Z). (4)
 - c. Simplify $A \cdot C + A \cdot (C + B) + C \cdot (C + B)$ using Boolean algebra and Realize the simplest possible circuit. (4)
 - d. Convert (A+B+C).(A+D) expression into standard Product Of Sum form. (4)
- Q.3 a. Explain the method to determine the given function is symmetric. (4)
 - b. Determine which of the following functions is symmetric and identify its numbers and variables of symmetry. (4)

$$f(X,Y,Z) = \Sigma(1,2,4,7)$$

c. Write a short note on Symmetric Networks.

- (4)
- d. Determine whether the function $f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 3, 4, 5, 6, 7, 12, 13)$ is a threshold function, and if it is, find a weight-threshold vector. (4)
- Q.4 a. Convert the following Mealy machine to an equivalent Moore machine. (8)

Present	Next State, Output	
State	X=0	X=1
A	C, 0	В, 0
В	A, 1	D, 0
С	В, 1	A , 1
D	D, 1	C, 0

2/12/12

Code: A-20 b. Write a VHDL code for simple MUX by using structural and data-flow styles. **(4)** Write a short notes on: (i) Guarded Blocks. (ii) Block Statements. **(4)** a. Given a logic design and implementation using the multiplexers for Q.5 $F1 = \Sigma$ (3, 7) using a 4:1 multiplexer. **(4)** Explain a 4-bit adder cum subtraction circuit, which uses the XORs as a controlled inverter. Explain the difference between a decoder and a digital multiplexer? Describe four applications of a c. decoder. d. Explain a parallel in serial out (PISO) left shift register using a state table. **(4)** a. Define a fundamental mode and pulse mode of operations for a sequential machine Q.6 **(4)** b. Compare Moore model and Mealy model with example. **(4)** c. For the Logic Circuit, construct transition. Table and determine all critical races and non-critical races. Explore the possibility of cycles. **(8)** a. Discuss the FPGA based design flow and specify the different tools available in the market for each abstraction **Q.7** level. **(4)** Write the VHDL Code for D flip-flop with asynchronous clear and preset using behavioural approach. **(4)** Write a VHDL code for one bit full adder using data flow architecture. Extend it to 4-bit adder using structural approach. **(4)** d. List the differences between variable and signals. Explain with one example. **(4)** Write short notes on the following: Q.8 (16)(i) Hazards and Races (ii) GAL devices (iii) CAD tools in digital system design (iv) Mixed style of Modelling in VHDL

2/12/12 Code: A-20

Q.9 a. Draw ASM chart of a serial adder and synthesize the Logic circuit. (8)

b. Explain the concept of microprogramming. Describe the "Horizontal microprogramming" and "vertical microprogramming. (8)