Total No. of Pages: 2
Register Number:
6013

Name of the Candidate:

M.Sc. DEGREE EXAMINATION - 2010

(ELECTRONIC SCIENCE)
(FIRST YEAR)
(PAPER - I)

510. APPLIED MATHEMATICS AND NUMERICAL METHODS

December)
(Time: 3 Hours
Maximum: 100 Marks.
SECTION - A
Answer any FIVE questions.

1. 2. Prove that $\operatorname{div}(\operatorname{curl} A)=0$.
1. 2. Find the inverse of the matrix.

$$
\left(\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

3. State and prove Cauchy's residue theorem.
4. Plot the graph of $\Gamma(n)$ for $0 \leq n \leq 4$.
5. Establish (i) change of scale property and (ii) Shifting property of Fourier Transform
6. Find the Laplace Transform of $\sin h(a t) \sin (a t)$
7. Fit a straight line to the following data by the method of least squares.

x	5	10	15	20	25
y	15	19	23	26	30

8. Derive second order Runge-Kutta formula for solving first order differential equation.

SECTION - B

Answer any FIVE questions. ($\mathbf{5 \times 1 6 = 8 0)}$
9. (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point (2, -1, 2)
(b) If $A=2 x z^{2} i-y z j+3 x z^{3} k$, find curl [curl A].
10. Define basis and dimension of a linear vector space.

Construct an orthogonal base from the vectors $(1,1,1),(1,0,1),(0,0,1)$ by Gram Schmidt process.
11. Diagonalise the symmetric matrix

$$
\left(\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)
$$

using an orthogonal matrix.
12. (a) Derive Cauchy - Riemann equations in polar form.
(b) Show that the function $u=1 / 2 \log \left(x^{2}+y^{2}\right)$ is harmonic and determine its conjugate.
13. (a) Obtain the power series solution of Legendre's differential equation.
(b) Evaluate using Beta or Gamma function.

$$
\int_{0}^{\pi / 2}\{\sqrt{\tan \theta}\} d \theta
$$

14. (a) Expand the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ as a Fourier series in the interval $-\pi<\mathrm{x}<\pi$.
(b) Find the temperature $u(x, t)$ in a bar of length 'L' perfectly insulated, and whose ends are kept at temperature zero while the initial temperature is given by

$$
F(x)=\left\{\begin{array}{ll}
x, & 0<x<L / 2 \\
L-x, & L / 2<x<L
\end{array}\right\}
$$

15. (a) Find the inverse Laplace transform of $(2 s+1) /\left(s^{2}-5 s+6\right)$
(b) Find the Laplace Transform of the output of a full- sine wave rectifier given below:

16. (a) Evaluate the integral $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ using Simpson's (1/3) rule. Verify your result by direct calculation.
(b) Solve the differential equation $y^{\prime}=x+y ; y(0)=1$, for $x=(0.0),(0.2),(0.4),(0.6)$ by Fourth order Runge-Kutta method. Compare your result with the exact solution.

$$
\% \% \% \% \% \%
$$

