AA-3353
 M. Phil. Examination
 April / May - 2003
 Mathematics : Paper-I

Seat No. \qquad

Time : Hours]
[Total Marks : 75

1. (a) Let G be a finite abelian group of order n and m be a positive integer dividing n . Show that G has a subgroup of order m.
(b) Show that every infinite group has infinitely many distinct subgroups.

OR

1. (a) Are any two of additive groups $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ isomorphic? Explain.
(b) Give an example of an infinite group G such that each $x \in G, x \neq e$ has the same finite (5) order.
(c) Can a group G have two distinct subgroups H_{1} and H_{2} of order 5 such that $\mathrm{H}_{1} \cap \mathrm{H}_{2} \neq\{e\}$?
.2. (a) Let G be a finite abelian group and $(\mathrm{n}, \mathrm{O}(\mathrm{G}))=1$. Prove that every $g \in G$ can be written as $g=x^{n}$ for some $x \in G$.
(b) Identify all homomorphisms of the ring \mathbf{Z} to itself.

OR

.2. (a) Let F be a field. Define the operation $*$ on $\mathrm{Fby} \mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}, \mathrm{a}, \mathrm{b} \in F$. Prove that $\{x \in F / x \neq 1\}$ forms a group under ${ }^{*}$, which is isomorphic to the multiplicative group $\{x \in F / x \neq 0\}$.
(b) Show that a commutative ring D is an integral domain iff for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in D , with $a \neq 0$ the (5) relation $\mathrm{ab}=\mathrm{ac}$ implies $\mathrm{b}=\mathrm{c}$.
3. (a) For $n \geq 1$ let $x_{n}=\frac{1.3 .5 \ldots . .(2 n-1)}{2.46 \ldots \ldots . . .(2 n)}$ and $y_{n}=\frac{1}{n^{2} x_{n}}$. Does $\left\{x_{n}\right\}$ converge? Does $\left\{y_{n}\right\}$ converge? Justify.
(b) Let $f: R \rightarrow R$ be continuous with $f^{\prime}(x)=0$ for each $x \neq 0$. Show that f is constant.

OR

3. (a) Let $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2 x_{n}}, n \geq 1$. Show that $\left\{x_{n}\right\}$ converges and $\lim _{n} x_{n}=2$.
(b) Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be continuous functions. Show that $h=\max \{\mathrm{f}, \mathrm{g}\}$ is continuous on R.
(c) If $f:[a, b] \rightarrow R$ is continuous, show that there is $g:[a, b] \rightarrow R$ such that $g^{\prime}(x)=f(x), \forall x \in[a, b]$.
Q.4. Attempt any three of the following:
(a) Show that the space X is disconnected iff there exists a continuous function $f: X \rightarrow\{0,1\}$ which is onto.
(b) Show that a convex subset of a normed linear space is connected. Can you say something more? Justify.
(c) Suppose X is a Hausdorff space and $f: R \rightarrow X$ is a continuous function such that $f(x)=x$ for all rational x. Show that $f(x)=x$ for all real x. Can you drop the condition of Hausdorffness? Justify.
(d) Show that a uniformly continuous image of a Cauchy sequence is Cauchy. Is this true for a continuous image? Justify.
(e) "A subset of a metric space is compact iff it is closed and bounded." Is the above true both-way, one-way or no-way? Justify your answer.
Q.5. Attempt any three of the following:
(a) Give a subset X of $[0,1]$ for which $\bar{X} \backslash X$ is infinite but the subset X is discrete as a subspace of $[0,1]$.
(b) " $x \in \bar{A}$ iff there exists a sequence $<\mathrm{x}_{\mathrm{n}}>$ in A converging to x " Which implication is always true? Which one is false? Justify.
(c) Define a complete metric on $(0,1)$ and a non-complete metric on R .
(d) Are the following true? (i) $\bar{A}=\operatorname{Int}\left(A^{\prime}\right)$ (ii) $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Justify.
(e) Show that P the set of irrationals is not locally compact.
