XX-3376

 M. Phil. Examination

 M. Phil. Examination
 April / May - 2003
 Mathematics : Paper-IV

Seat No.

Time: $\mathbf{3}$ Hours]
[Total Marks : 75

1 (a) Give a complete description to show that $\mathbf{C}(\mathbf{X})$ is a 8 commutative Banach algebra with identity. (\mathbf{X} is a compact, T_{2} space).
(b) Define quasi-regular elements in an algebra. If algebra has identity then show that x is quasi-regular if and only if $e-x$ is regular.

OR

1 (a) If $(\mathbf{V},\|\cdot\|)$ is a Banach space over then show
8 that $L(V)$ is a Banach algebra.
(b) Define regular ideal in an algebra. If $I \subset A$ is a proper regular two sided ideal in an algebra A then show that A / I is an algebra with identity.

2 (a) Show that every Banach division algebra is commutative. 8
(b) Define topologically nilpotent element in a normed algebra. Give an example of a topologically nilpotent element which is not nilpotent.
OR

2 (a) State and prove Gelfand-Mazur theorem using the 8 non-emptiness of $\sigma(\mathbf{x})$.
(b) L£ A be a Banach algebra with identity c. If $x \in b d y\left(A^{-1}\right)$ then show that x is a two sided topological zero divisor.

3 Attempt any three :
(a) Define spectral radius and state spectral radius formula. If A is a Banach algebra then is it true that $\|x\|=\|x\|_{\sigma}, \quad \forall x \in A$? J ustify your answer.
(b) State and prove spectral mapping theorem for polynomials.
(c) Characterize maximal ideals in the disc algebra $A(D)$.
(d) Define semi-simple Banach algebra with an illustration. Is a semi-simple Banach algebra ? - Explain.
(e) Provide with explanation an example of a commutative Banach algebra A that contains a subalgebra B such that $\Delta(\mathbf{A}) \subset \Delta(\mathbf{B})$ and $\Delta(A) \neq \Delta(B)$.

4 (a) Determine all the odd primes that can be expressed in the form $x^{2}+x y+5 y^{2}$.
(b) Determine all the positive integers that can be expressed in the form $x^{2}-y^{2}$.
(c) Find the least positive integer that can be represented by $4 x^{2}+17 x y+20 y^{2}$.
(d) Prove that there are infinitely many irreducible elements in the integral domain of any quadratic field.
(e) Show that $Q(\sqrt{-17})$ does not have unique factorization. 5

OR

4 (a) Determine all the positive integers that can be expressed in the form $x^{2}+2 y^{2}$.
(b) Determine all the primes that can be represented by $x^{2}+5 y^{2}$.
(c) Calculate the class number $h(-31)$.
(d) Show that $Q(\sqrt{3})$ is Euclidean. Determine algebraic
integers α, β is in $Q(\sqrt{3})$ such that

$$
(1+2 \sqrt{3}) \alpha+(5+4 \sqrt{3}) \beta=1
$$

(e) For $d<0$, describe the units in $Q(\sqrt{d})$.
(d is a square-free integer).

