(Pages : 3)

K 5182

Name.....

SIXTH SEMESTER B.C.A. DEGREE EXAMINATION, FEBRUARY/MARCH 2005

(Vocational Course)

Optional Subject: Mathematics

Paper XI—REAL AND COMPLEX ANALYSIS

Time: Three Hours

Maximum: 90 Marks

Section A

(Maximum: 40 marks)

Each question carries 5 marks.

- 1. If A is closed and G is open, prove that
 - (a) G-A is open.
 - (b) A-G is closed.
- 2. Show that the only limit point of $S = \left\{ a + \frac{1}{n} : n \in \mathbb{N} \right\}$ is a.
- 3. Prove that countable union of countable sets is countable.
- 4. Given $a_1 > 0$ and $a_{n+1} = \frac{1}{a_n} + \frac{a_n}{2} \forall n \in \mathbb{N}$. Show that $\langle a_n \rangle$ converges to $\sqrt{2}$.
- 5. Prove that (0, 1] is uncountable.
- 6. State and prove Cauchy's first theorem on limits.
- 7. Examine the convergence of the series:

(a)
$$\sum (n^2 (n+1))^{-1/2}$$
.

(b)
$$\sum \{(n^3+1)^{1/3}-n\}.$$

- 8. Show that the function $f(x) = \sin x^2$ is continuous and bounded on R, but not uniformly continuous on R.
- 9. Show that the series $\sum \frac{(-1)^{n-1}}{x^2+n}$ converges uniformly on R but not absolutely.

- 10. Define limit point of a sequence. Find the limit superior and limit inferior of the following:-
 - (a) sequence $\langle a_n \rangle$ where $a_n = \sin \frac{n\pi}{3}$, $n \in \mathbb{N}$.
 - (b) sequence $\langle a_n \rangle$ where $a_n = \frac{(-1)^n}{n}$, $n \in \mathbb{N}$.
- 11. Show that the exponential function E satisfies E (x + y) = E(x) E(y) for all $x, y \in R$.
- 12. State and prove Weierstrass M-test.

 $(8 \times 5 = 40 \text{ marks})$

Section B

(Maximum: 40 marks)

Each question carries 5 marks.

- 13. Show that the function $f(z) = |z|^2$ is differentiable at the origin, but not analytic there.
- 14. Find the equation of the circle described on the line joining 1+i and 1-i as diameter.
- 15. If a function is analytic, prove that it is independent of \bar{z} .
- 16. State and prove Liouville's theorem.
- 17. State and prove Cauchy's Integral formulae.
- 18. Expand $\frac{z-1}{z^2}$ about z=1 in:
 - (a) Taylor's series.
 - (b) Laurent's series.
- 19. State and prove Cauchy's residue theorem.
- 20. Using contour integration along the unit circle, show that $\int_{0}^{2\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{2\pi}{\sqrt{a^2-b^2}}, a>|b|.$
- 21. Using contour integration, evaluate

$$\int\limits_0^\infty \frac{1}{\left(x^2+1\right)^2}\,dx.$$

- 22. Find the bilinear transformations which maps the points -i, o, i into -1, i, 1 respectively.
- 23. Show that both the transformations $w = \frac{1+z}{1-z}$, $w = \frac{z+1}{z-1}$ map the left half plane $\text{Re }(z) \le 0$ onto $|w| \le 1$.
- 24. Discuss the transformation $w = \sqrt{z}$.

Section C

Answer all the five questions. Each question carries 2 marks.

25. If
$$a > 0$$
, show that $\lim_{n \to \infty} \frac{n}{(1+a)^n} = 0$.

- 26. Define interior of a set and prove that it is always open.
- 27. Show that z = 0 is an essential singularity of the function $\sin\left(\frac{1}{z}\right)$.
- 28. If f(z) and $\overline{f(z)}$ are analytic in a region, show that f(z) is constant in that region.
- 29. Find an analytic function with real part 2xy.