- 1. What is the formula of bleaching powder?
 - (b) Ca(OCl)Cl
- (c) Ca(OCl)₂ (d) Ca(OCl)₂Cl

(a) CaO(OCl)

- 2. By which one of the following compounds both CH_4 and $CH_3 CH_3$ can be prepared in one step?
 - (a) CH₃I (b) CH₃OH
 - (c) CH_3CH_2I (d) C_2H_5OH

3. R — NH — COH $\xrightarrow{\text{POCl}_3}$ product

In the given reaction, what will be the product?

- (a) R N = C = 0 (b) R N = C(c) R - C = N (d) None of these
- 4. A + B = C + D. If initially the concentration of A and B are but equal but at equilibrium, concentration of ν will be twice of that of A,

then what will be the equilibrium constant of reaction? (a) 4/9 (b) 9/4 (c) 1/9 (d) 4 5. Which of the following is secondary pollutant? (a) CO ₂ (b) N ₂ O (c) PAN (d) SO ₂ 6. The geometry of Ni(CO) ₄ and Ni(PPh ₃) ₂ Cl ₂ are: (a) both square planar (b) tetrahedral and square planar respectively (c) both tetrahedral (d) square planar and tetrahedral respectively 7. Cr is member of 3d transition series of atomic number 24. What will be its electronic configuration? (a) 3d ⁶ 4s ² (b) 3d ⁵ 4s ² (c) 3d ⁴ 4s ² (d) 3d ⁵ 4s ¹ 8. Which of the following compounds is carborundum? (a) Al ₂ O ₃ (b) SiO ₂ (c) SiC (d) SnO ₂ 9. What amount of Cl ₂ gas liberated at anode, if 1 ampere current is passed for 30 minute from NaCl solution?	 14. If for a sucrose solution, elevation in boiling point is 0.1°C, then what will be the boiling point of NaCl solution for same molal concentration? (a) 0.1°C (b) 0.2°C (c) 0.08°C (d) 0.01°C 15. Which of the following have maximum number of unpaired electrons? (a) Fe³⁺ (b) Fe²⁺ (c) Co²⁺ (d) Co³⁺ 16. Which of the following statements is false? (a) CaOCl₂ gives OH⁻, Cl⁻ and OCl⁻ in aqueous solution (b) Diamond and graphite are allotropes of carbon (c) Bleaching action of Cl₂ in moist condition is not permanent (d) Calomel is Hg₂Cl₂ 17. What will be the order of Ist ionisation energy? (a) Li > Na > K (b) K > Li > Na (c) Na > Li > K (d) Li > K > Na 18. The element ₉₀Th ²³² belongs to thorium series. Which of the following will act as the end product of the series? 						
(a) 0.66 mol (b) 0.33 mol	(a) 82 Pb ²⁰⁸ (b) 82 Bi ²⁰⁹						
(c) 0.66 g (d) 0.33 g	(c) 82 Pb ²⁶⁹ (d) 82 Pb ²⁰⁷						
10. Certain crystals produce electric signals on							
application of perssure. This phenomenon is	19. The reaction of HBr with $C = CH_2$ in the						
called:	CH ₃						
(a) pyroelectricity (b) ferroelectricity (c) piezoelectricity (d) ferrielectricity	presence of peroxide will give :						
11. Aspirin is :	CH ₃						
(a) antipyretic (b) tranquilizer	(a) CHCH ₂ Br						
(c) narcotic (d) anaesthetic	CH ₃						
12. Which of the following is not a property of	CH ₃						
liquid state ?	(b) CH ₃ CH ₂ CH						
(a) Intermolecular force of attraction in a liquid	CH ₃						
is quite large (b) All liquids accompanied by cooling on	(c) CH ₃ — CBr — CH ₃						
evaporation	CH ₃						
(c) Lower the boiling point of a liquid, greater	(d) CH ₃ CH ₂ CH ₂ CH ₂ Br						
is its vapour pressure at room temperature (d) A liquid boils at high temperature at the top of a mountain than at the sea level 13. In Williamson's synthesis, ethoxyethane is prepared by:	20. Given pH of a solution A is 3 and it is mixed with another solution B having pH 2. If both mixed, then resultant pH of the solution will be: (a) 3.2 (b) 1.9						
(a) passing ethanol over heated alumina	(c) 3.4 (d) 3.5						
(b heating sodium ethoxide with ethyl bromide	 21. With which of the given pairs CO₂ resembles? (a) HgCl₂, C₂H₂ (b) HgCl₂, SnCl₄ 						
 (c) treating ethyl alcohol with excess of H₂SO₄ at 430-440 K (d) heating ethanol with dry Ag₂O 	(c) C ₂ H ₂ , NO ₂ (d) N ₂ O and NO ₂						
The state of the s							

22. If magnetic quantum number of a given atom represented by -3, then what will be its principal quantum number? (a) 2 (b) 3	 31. Glucose has difference from fructose in that it: (a) does not undergo hydrolysis (b) gives silver mirror with Tollen's reagent (c) monosaccharide
(c) 4 (d) 5 23. Which of the following will show geometrical isomerism? (a) but-1-ene (b) but-2-ene (c) 2, 3-dichlorobutane (d) ethene 24. What will be the IUPAC name of given	 (d) none of the above 32. Which of the following gives correct arrangement of compounds involved based on their bond strength? (a) HF > HCl > HBr > HI (b) HI > HBr > HCl > HF (c) HF > HBr > HCl > HI (d) HCl > HF > HBr > HI
compound? CH_3 CH_2 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3	33. The enthalpy of combustion at 25°C of H ₂ , cyclohexane (C ₆ H ₁₂) and cyclohexene (C ₆ H ₁₀) are – 241, – 3920 and – 3800 kJ/mol respectively. The heat of hydrogenation of cyclohexene is: (a) – 121 kJ/mol (b) + 121 kJ/mol (c) – 242 kJ/mol (d) + 242 kJ/mol
(a) 2, 5-diethyl-4-methylhexane (b) 3, 4, 6-trimethyloctane (c) 2, 5, 6-trimethyloctane (d) 3, 5-dimethyl-6-ethylheptane 25. A mixture of camphor and benzoic acid can be	34. The entropy values (in $JK^{-1}mol^{-1}$) of $H_2(g) = 130.6$, $Cl_2(g) = 223.0$ and $HCl(g) = 186.7$ at 298 K and 1 atm pressure. Then entropy change for the reaction: $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) \text{ is :}$
separated by : (a) chemical method (b) sublimation (c) fractional distillation (d) extraction with a solvent	(a) + 540.3 (b) + 727.3 (c) - 166.9 (d) + 19.8 35. A certain sample of gas has a volume of 0.2 L measured at 1 atm pressure and 0°C. At the same pressure but 273°C, its volume will be:
26. HCHO reacts with CH ₃ MgI to give: (a) CH ₃ CH ₂ OH (b) CH ₃ OH (c) CH ₃ CH ₂ I (d) CH ₃ I	(a) 0.4 L (b) 0.8 L (c) 27.8 L (d) 55.6 L 36. Hardness of water is due to presence of salts of :
27. reacts with acetic acid in presence of Hg ²⁺	(a) Na ⁺ and K ⁺ (b) Ca ²⁺ and Mg ²⁺ (c) Ca ²⁺ and K ⁺ (d) Ca ²⁺ and Na ⁺
to give : $ \begin{array}{ccc} \text{CH}_3 & \text{CH(CH}_3\text{COO})_2 \\ \text{(a)} & & \text{(b)} & \\ \text{CH(CH}_3\text{COO})_2 & \text{CH(CH}_3\text{COO})_2 \end{array} $	 37. Total number of atoms represented by the compound CuSO₄ · 5H₂O is : (a) 27 (b) 21 (c) 5 (d) 8 38. The half-life of a first order reaction having rate constant k = 1.7 × 10⁻⁵ s⁻¹ is :
(c) (d) none of these CH ₂ (CH ₃ COO)	(a) 12.1 h (c) 11.3 h (d) 1.8 h
28. Which of the following have highest electron affinity?	39. Which one of the following contain isopropyl group?
(a) F (b) Cl (c) N (d) O 29. Which among the following is strongest acid?	(a) 2, 2, 3, 3-tetramethylpentane(b) 2-methylpentane(c) 2, 2, 3-trimethylpentane(d) 3, 3-dimethylpentane
(a) H(ClO)O ₂ (b) H(ClO)O ₃ (c) H(ClO)O (d) H(ClO) 30. Which of the following amino acid is optically inactive? (a) Phenyl alanine (b) Glycine (c) Glutamic acid (d) Asparagine	 40. When electrons are trapped into the crystal in anion vacancy, the defect is known as: (a) Schottky defect (b) Frenkel defect (c) stoichiometric defect (d) F-centres

Answer – Key

									100					-	1 171				
1.	b	2.	а	3.	b	4.	d	5.	C	6.	С	7.	d	8.	С	9.	С	10.	С
11.	a	12.	d	13.	b	14.	b	15.	a	16.	С	17.	a	18.	a	19.	a	20.	b
21.	a	22.	С	23.	b	24.	b	25.	а	26.	а	27.	a	28.	b	29.	b	30.	b
31.	b	32.	a	33.	a	34.	d	35.	a	36.	b	37.	b	38.	С	39.	b	40.	d