Visit www.brpaper.com for downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com	
Roll No.	Total No. of Pages : 03
Total No. of Questions : 07	
BCA (2011 & Onward) (Sem.–1)	
MATHEMATICS-I	
Subject Code : BSBC-103	
Paper ID:[B1110]	
Time : 3 Hrs.	Max. Marks:60
 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions. SECTION-A 	
1. Write brief :	
(a) Prove that $(A \cap B)^C = A^C \cup B^C$ where A^C der	notes complement of A.
(b) Find the truth table for $(\sim p) \lor (\sim q)$.	s G
(c) Let $P(n)$ be the statement $(4^n > n)$, if $P(n)$ is also true.	true, prove that $P(n + 1)$ is
(d) Draw the 2-regular graph.	K
(e) Define simple and non-simple graph.	
(f) Define : (i) Euler path (ii) Euler Circuit	

- (g) Define recurrence relation and order of recurrence relation.
- (h) Find the characteristic equation of

 $S(n) - 5 \cdot S_{n-1} + 6/S_{n-2} = 0.$

- (i) Let R be relation 'greater than' from set $A = \{1, 4, 5\}$ to set $B = \{1, 2, 3, 4, 5\}$. Write down the Cartesian product corresponding to R.
- (j) Define recurrence relation and order of recurrence relation.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION-B

- 2. (a) In a survey of 60 people, it was found that 25 read Newsweek magazine, 26 read Times, 34 read Fortune, 9 read both Newsweek and Fortune, 11 read both Times and Newsweek, 8 read both Times and Fortune, 3 read all three magazines. Find : (i) the no. of people who read at least one of the three magazines ? (ii) The number of people who read exactly one magazine.
 - (b) Let R be the relation defined on the set of of natural numbers N as $R = \{(x, y) | x, y \in N, 2x + y = 41\}$. Find the domain and range of R. also verify whether.

R is (i) reflexive (ii) symmetric (ii) transitive.

- 3. (a) Show that $(p \land q) \rightarrow (\sim p \lor q)$ is a tautology.
 - (b) Write down :
 - (i) Contrapositive of $p \rightarrow \sim q$.
 - (ii) Contrapositive of converse of $p \rightarrow \sim q$.

(iii) Inverse of Converse of $p \rightarrow q$.

- 4. (a) In graph theory prove that the sum of the degrees of all the vertices in a graph G is equal to twice the number of edges in G.
 - (b) Is it possible to construct a graph with 12 edges such that two of its vertices have degree 3 and remaining vertices have degree 4.
- 5. (a) Does the graph G given below have Hamiltonian Circuit ? Justify your answer.

visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

(b) How many spanning trees the following graph have ? Draw its all spanning trees.

