Roll No.
Total No. of Pages : 03
Total No. of Questions: 07

BCA (2011 \& Onward) (Sem.-1)
 MATHEMATICS-I
 Subject Code : BSBC-103

Paper ID : [B1110]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write brief :
(a) Prove that $(A \cap B)^{C}=A^{C} \cup B^{C}$ where A^{C} denotes complement of A.
(b) Find the truth table for $(\sim p) \vee(\sim q)$.
(c) Let $\mathrm{P}(n)$ be the statement $\left(4^{n}>n\right)$, if $\mathrm{P}(n)$ is true, prove that $\mathrm{P}(n+1)$ is also true.
(d) Draw the 2-regular graph.
(e) Define simple and non-simple graph.
(f) Define : (i) Euler path (ii) Euler Circuit
(g) Define recurrence relation and order of recurrence relation.
(h) Find the characteristic equation of

$$
\mathrm{S}(n)-5 . \mathrm{S}_{n-1}+6 / \mathrm{S}_{n-2}=0 .
$$

(i) Let R be relation 'greater than' from set $\mathrm{A}=\{1,4,5\}$ to set $\mathrm{B}=\{1,2,3$, $4,5\}$. Write down the Cartesian product corresponding to R .
(j) Define recurrence relation and order of recurrence relation.

SECTION-B

2. (a) In a survey of 60 people, it was found that 25 read Newsweek magazine, 26 read Times, 34 read Fortune, 9 read both Newsweek and Fortune, 11 read both Times and Newsweek, 8 read both Times and Fortune, 3 read all three magazines. Find : (i) the no. of people who read at least one of the three magazines ? (ii) The number of people who read exactly one magazine.
(b) Let R be the relation defined on the set of of natural numbers N as $\mathrm{R}=\{(x, y) \mid x, y \in \mathrm{~N}, 2 x+y=41\}$. Find the domain and range of R. also verify whether.

R is (i) reflexive (ii) symmetric (ii) transitive.
3. (a) Show that $(p \wedge q) \rightarrow(\sim p \vee q)$ is a tautology.
(b) Write down :
(i) Contrapositive of $p \rightarrow \sim q$.
(ii) Contrapositive of converse of $p \rightarrow \sim q$.
(iii) Inverse of Converse of $p \rightarrow q$.
4. (a) In graph theory prove that the sum of the degrees of all the vertices in a graph G is equal to twice the number of edges in G.
(b) Is it possible to construct a graph with 12 edges such that two of its vertices have degree 3 and remaining vertices have degree 4 .
5. (a) Does the graph G given below have Hamiltonian Circuit? Justify your answer.

Visit www.brpaper.com for

 downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com(b) How many spanning trees the following graph have ? Draw its all spanning trees.

6. Solve $\mathrm{S}_{n}-7 \mathrm{~S}_{n-2}+6 \mathrm{~S}_{n-3}=0$, when $\mathrm{S}_{0}=8, \mathrm{~S}_{1}=6, \mathrm{~S}_{2}=22$.
7. If $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, prove that $A^{3}-6 A^{2}+11 A-I=0$ and hence find A^{-1}.

