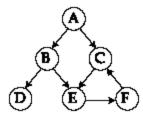

Computer Science and Applications

PAPER-II


Note: This paper contains fifty (50) objective-type questions, each question carrying two (2) marks. Attempt all of them.

1. The following determiniotic finite automata recognizes:

- (A) Set of all strings containing 'ab'
- (B) Set of all strings containing 'aab'
- (C) Set of all strings ending in 'abab'
- (D) None of the above

2. Depth ion travels of the following directed graph to

- (A) ABCDEF
- (B) ABDEFC
- (C) ACEBDF
- (D) None of the above
- 3. The maximum number of nodes in a binary tree of depth 10:
 - (A) 1024
- (B) $2^{10} 1$
- (C) 1000
- (D) None of the above
- 4. The regular expression given below describes:

$$r = (1+01)^{4}(0+\lambda)$$

- (A) Set of all string not containing '11'
- (B) Set of all string not containing '00'
- (C) Set of all string containing '01'
- 🔼) Set of all string ending in '0'
- Which of the following language is regular:
 - (A) $L = \{ a^n b^n | n \ge 1 \}$
 - (B) $L = \{ a^n b^m c^n d^m | n, m \ge 1 \}$
 - (C) $L = \{ a^n b^m | n, m \ge 1 \}$
 - (D) $L = \{ a^n b^m c^n | n, m \ge 1 \}$

6.	2's co	omplement of -1	00 is	:				
	(A)	00011100	(B)	10011101	(C)	10011100	(D)	11100100
7.	Whic	th of the followin	g exp	ression rem	ove hazard	form: $xy + z\overline{x}$?	
	(A)	$xy + z\overline{x}$		(B)	$xy + z\overline{x}$			
	(C)	$xy + z\overline{x} + yz$		(D)	$xy + z\overline{x} + \overline{x}$	√J Z		1
8.	How	many 1's are pre	sent i	in the binar	y represent	ation of 15×256	$+5\times1$	6+3
	(A)	8	(B)	9	(C)	10	(D)	11
9.	If A	⊕B-C, t hen:						
	(A)	$A \oplus \subset -B$		(B)	B⊕C−A	_		
	(C)	A⊕B⊕C-1		(D)	A⊕B⊕C	-0	•	
10.		t is the maximum				inary counter wl	hich is	composed of
	_	Flop with a propa 1MHz	agatio (B)	n delay of 10MHz	25ms ?	100MHz	(D)	4MHz
	()	117212	(2)	1017111			(2)	117212
11.	int i : Whil (A) (B) (C) (D)	e (i++< 0)i will terminate will go into an ir will give compil will never be ex	; nfinite ation ecuted	error				
12.	n bits (A)	are always filled	with	zeroes	n 'C' langua	ge, after shifting	g n bits,	, the leftmost
	(B) (C) (D)	are always filled are filled with zo none of the abov	eroes		í is machine	e dependent		
1 3.	Wha	t keyboard in clas	s spe	cification h	elps to hide	data :		
1	(A)	Public	(B)	Private	(C)	Static	(D)	Void
14.	main	1 7		ollowing 'C	' program ?			
	{prin (A)	uuf ("%×", −1>> 	4);} (B)	Offf	/C\	0000	/T)\	fffO
	(A)	1111	(11)	OIII	(C)		(D)	mo
					_			

15.	(A)		-	sm can be a al function :		-	: pointer of t	he ha	മേറിമ	99	
	(B)	_		al function	_		-	ic ba	<i>3</i> C 4 <i>a</i>	33	
	(C)					,	,				
		None of t	hese								
16.	Whi.	ch of the fo	11owin	ig statemen	ta ia w	mno	7				
10.	(A)			_		_	dead locks.				
	(B)	-	_	, rotocols suf							
	(C)		_				cading roll b	oack w	vhere	as 2-phase	e lockin
		Protocol o									
	(D)	None of t	hese								•
17.	A re	cursive fore	eign ke	y is a:						O	
	, ,	references					references				
	(C)	references	its ov	vn relation		(D)	references	a fore	ign k	ey.	
18.	A su	bclass havi	ng mo	re than one	super	dass	is called				
	(A)	Category					Classificat				
	(C)	Combinat	ion			(D)	Partial Par	rticipa	tion		
19.	A Re	elation R =	{A,B,C	I,D,E,F} is g	jven v	all fo	ollowing set	of fu	nction	al depend	lencies :
	F= {	$A \rightarrow B$, AD	→ C, B	\rightarrow F,A \rightarrow E	}. W	ch o	the follow:	ing is	Cand	idate Key	?
				AC		(C)			(D)		
20.	Whi	rh statemer	nt is fa	lse repardi	og lata	a Inde	ependence :				
	(A)						lata Indeped				
	(B)			suffer <mark>s</mark> from	7		_				
	(C)	Relational	mode	l suffers or	dy froi	m log	ical data Ind	lepen	dence		
	(D) Relational model suffers only from physical data Independence.										
			•		SE:	Γ - II					
21.		time requir			t path	_	raph with r	ı verti			is:
	(A)	<u>C(s)</u>	(B)	O(n)		(C)	$O(e^2)$		(D)	$O(n^2)$	
-			1								
22		order is also Depth firs				(B)	Breadth fir	ret ovrå	low.		
	(A) (C)	Topologic				(D)	Linear ord		tei		
	(-)	10P0.0B10	014			(-)	221010 011				
23.	The	_	-	k express f o	r d/(e	+ f) + 1					
	(A)	•				(B)	def+/bc+				
	(C)	def+/bc⁴	+			(D)	None of th	iese			
	-0-										

24.	Whi	ch algorithm has	some	average	e, wo	rst ca	se an	d best case	time :			
	(A)	Binary search				(B)	Max	imum of n	numbers			
	(C)	Quick sort				(D)	Fibo	nacci search	n			
25.	App	Application of data structure is queue is :										
	(A)	Level wise print	ing of	ftree.								
	(B)	Implementation	of pri	iority q	ueue	s.						
	(C)	Function call in	nplem	entatior	ı							
	(D)	Depth first sear	ch in a	a graph	-						~()	
26.	In ca	ase of Bus/Tree to	polog	y signa	l bala	ancin	g issu	e is overcon	ne by :			
	(A)	Strong Transmi	tter			(B)	Polli	ing				
27.	(C)	Segmentation				(D)	Mod	lulation				
27.	Whi	ch of the followin	ıg tedi	nniques	are i	used t	to con	itrol data flo	W 2			
	1.	Windowing	2.	Routir	ng		3.	RFCs	4	-	Buffering	
	(A)	1,4	(B)	2,3,4			(C)	1,3.4	(I	D)	1,2,3,4	
28.	TDM	1 is						^				
26. I (27. \frac{1}{2} (28. \frac{1}{3} (30. \frac{1}{3}	(A)	A primary/secondary type protocol										
	(B)	A peer/peer pro	otoco1									
	(C)	A Non-priority	peer/	peer pr	o occ	01	•					
	(D)	A priority type	protoc	col								
29.	Wha	t services does th	e Inte	met (a)	U Pr r	rovid	e ?					
	1.	Quality of servi			7 r 2.	Rout						
28. 29.	3.	Addressing			<u>-</u> . 4.			n-oriented o	delivery			
	5.	Framming bit							,			
		1,2,3	(B)	2,3,4			(C)	1,3,4,5	(I	D)	2,3,4,5	
30.	Whi	ch of the followin	g prot	tocols is	use	á to p	rever	nt looping ?				
		CSPF				(B)		uning tree				
27. W 1. (# 28. TI (# 29. W 1. 3. 5. (# 30. W (# 31. (# 32. A (# 32. A	(C)	SRB				(D)	_	ment free s	witching	,		
•		4					_		_			
31	The	parsing technique	e that	avoids	back	track	ding is	3:				
	(A)	Top - down par	sing			(B)	Recu	ırsive - desc	ent pars	ing		
	(C)	Predicative				(D)	Synt	ax tree				
32.	A To	p - down Parse g	genera	ites:								
	(A)	Right - most der	rivatio	n.		(B)	Righ	ıt - most der	ivation,	in 1	everse.	
	(C)	Left - most deri	vation	_		(D)	Left	- most deriv	zation in	rev	rerse.	
						-						

5

P.T.O.

J - 8707

33.	In an absolute loading scheme, we programmer? (A) Allocation (C) Rellocation	vhich (B) (D)	Linking		accom	mplished by
34.	Symbol table can be used for: (A) Checking type compability (B) Suppressing duplication of error (C) Storage allocation (D) All of these above	messa	age			2
35.	Moving process from main memory to (A) Caching (C) Swapping	(B)	s called : Termina Interruj			Э,
36.	Part of a program where the shared me indivisibly, is called : (A) Semaphores (C) Critical section	emory (B) (D)	Directo		should	be executed
37.	Windows is a operating sy (A) Non-preemptive (C) Multi-user	ystem (B) (D)	Preemy Real tim			
38.	The "nice" command is used in Unix: (A) to decrease the priority of a process. (B) to increase the priority of a process. (C) to get the highest priority. (D) nothing to do with the priorities.	ess. ess.				
39.	Which page replacement policy suffers (A) LRV (B) LFU	s from	-	anomaly ? FO	(D)	OPTIMAL
40.	Cache memory is : (A) High-Speed Register (C) Non-Volatile RAM	(B) (D)	_	eed RAM eed RAM		
41.	Which or the following combination	n is p	referred	with respec	t to co	hesion and
1	oupling: (A) low and low (C) high and low	(B) (D)	low and high an	_		
42.	Difference between flow-chart and data (A) there is no difference (B) usage in high level design and lo (C) control flow and data flow (D) used in application programs an	w leve	l design			

43.	Mate	ch the following :	:						
	(a)	Unit test		(i)	Requ	iireme	ents		
	(b)	System test		(ii)	Desi	gn			
	(c)	Validation test		(iii)	Code	e			
	(d)	Integration test		(iv)	Syste	em En	gineering		
	Whi	ch of the followin	g is true :		-				
		(a) (b) (c)	(d)						
	(A)	(ii) (iii) (iv)	(i)						
	(B)		(iii)						
	(C)	(iii) (iv) (i)	(ii)						
	(D)	None of the abo	ve						
44.	Prob	olems with waterf	all model a	re:					
	1.	Real projects rar	ely follow t	this m	odel r	ropos	ses		
	2.	It is often difficu	-		_	1			
	3.	Working model	is available	only	in the	end		•	
	4.	Developers are		-)	
	Whi	ch of the followin	-		-				
		1 and 4 only		(B)	2 an	d3 or	dy		
	(C)	1, 2 and 3 only		(D)	1, 2,	3 and	4		
4 5.	Whi	ch one of the follo	nwino is a d	nbiect-	orient	ed an	proaches ·		
•••	(A)	The Booch meth	_	Jugaca	(B)		Rambaugh met	thod	
	(C)	The Load and Y		thod	(D)		of the above	2.00	
	()								
46 .	Whi	ch technical conce	ept sets elli	u lar a	part fr	om al	l preceding mo	bile/rad	lio systems i
	(A)	FM-Transmissio			(B)		lex Functionali		, -,
	(C)	Frequency Reus			(D)	_	fA Technology	-	
	()			•	(-)				
47.		eless interconne <mark>c</mark> t	ion to the P	STN a	are als	o kno	wn as:		
	(A)	Localities			(B)	CLE			
	(C)	POPs			(D)	IXCs	3		
4 8.	Dim	entional modeling	r in Data M	inino	refers	to ·			
10.		view and interr	_	шш.5	(B)		ie structures an	d store	data
	(0)		_		(D)		of these	ia store	aaa
•		redicve adoma	don only		(2)	10010	. or arese		
49	The	U-NII (Unlicens	ed Nationa	1 Info	rmati	on In	frastructure) b	and one	erates at the
		frequency		11111	,1111444	011 111	irastractare, b	and op	inco at an
	(A)	2.4 GHz	(B) 33 N	⁄IHz		(C)	5 GHz	(D)	16 GHz
	()	-	(-) - /			(-)		(-)	
50.	Whi	ch digital radio te	chnology e	mplov	rs an I	V = 1	frequency-reus	e plan ?	
•		GSM	(B) TDN			(C)	D AMPS	(D)	CDMA
	()		(-)			(-)		(-)	

- o O o -