
JEST-2011 Questions, Series- Q

15.N particles are distributed among three energy states E=0, k_BT , $2k_BT$ The equilibrium energy is $1000k_BT$. Then
Total number of molecules in the system is a. 1400 b.2400 c.3400 d.4400
16. How long it will take for sound to travel the distance l between two points A and B between the time periods T_1
and T_2 . Assume that the velocity proportional to $\alpha\sqrt{T}$
a. $\frac{l}{\alpha(\sqrt{T_1}+\sqrt{T_2})}$ b. $\frac{2l}{\alpha(\sqrt{T_1}+\sqrt{T_2})}$ c. $\frac{l}{\alpha(T_1+T_2)}$ d. $\frac{l}{\alpha\sqrt{T_1+T_2}}$
17. The wave function of a particle in a one dimensional potential well $\psi(x,t) = A\left[1 + \frac{x}{L}\right]$; $-L \le x < 0$
$A\left[1-\frac{x}{l}\right]$; $0 \le x < L$
0; x > L
Then a. Probability of finding the particle is $\frac{1}{2} 0 \le x < L$ b. $\langle x \rangle = 0$ c. $A = \frac{3}{2L}$ d. It is a stationary state.
18.Two spherical conductors A_1 , A_2 with radius r_1 , r_2 where $r_1 < r_2$. The outer conductor is earthed and lower
conductor has given a voltage then the capacitance of the system is
conductor has given a voltage then the capacitance of the system is a. $4\pi\varepsilon_0(r_1+r_2)$ b. $4\pi\varepsilon_0\frac{r_1r_2}{r_2-r_1}$ c. $4\pi\varepsilon_0(r_2r_1)$ d. $4\pi\varepsilon_0(r_1-r_2)$ 19.f= x^2 - y^2 +2ixy, g= f= x^2 + y^2 -2ixy then
$r_2 - r_1$ 19.f= $x^2 - y^2 + 2ixy$, g= f= $x^2 + y^2 - 2ixy$ then
a. f,g are analytic in z b. f,g are not analytic in z c. f analytic ,g not analytic d. g analytic g not analytic
aborgo is places half way between the two point aborges then the tension is
20. Two identical point charges are separated by a string and the tension between them is T. When an another identical charge is places half way between the two point charges then the tension is a. T b.2T c.4T d.5T
21. A force F = 2x+y-3z is applied to a particle having with a velocity v=3x-y if we have
F= F parallel + F perpendicular as a sum of a vector F parallel to v and vector F perpendicular to V then F
perpendicular is given by a. ½ x +3/2 y -2z b. x+3y-6z c. 3/2 x-3/2 y d. 8x+4y -z
a. $\frac{1}{2}$ x +3/2 y -2z b. x+3y-6z c. $\frac{3}{2}$ x -3/2 y d. $\frac{8}{2}$ x+4y -z
22.A particle m is confined to move in a range $0 < x < :$ the potential $v(x) = \frac{1}{2} \text{ mw}^2 x^2$. The partition function for the
temperature $T = \frac{1}{k_B \beta}$ a. $\frac{\frac{\beta \hbar \omega}{e^2}}{e^{\beta \hbar \omega} - 1}$ b. $\frac{1}{1 - e^{-\beta \hbar \omega}}$ c. $\frac{e^{-\frac{\beta \hbar \omega}{2}}}{-\frac{\beta \hbar \omega}{e^{\beta \hbar \omega}}}$ d. $\frac{e^{\frac{\beta \hbar \omega}{2}}}{e^{\beta \hbar \omega} - 1}$ (options c,d might not correct)
$\frac{\beta \hbar \omega}{2}$ $\frac{\beta \hbar \omega}{2}$ $\frac{\beta \hbar \omega}{2}$
a. $\frac{e^2}{e^{\beta \hbar \omega} - 1}$ b. $\frac{1}{1 - e^{-\beta \hbar \omega}}$ c. $\frac{e^2}{-\beta \hbar \omega}$ d. $\frac{e^2}{e^{\beta \hbar \omega} - 1}$ (options c,d might not correct)
$e^{-\frac{\gamma}{2}-1}$ 23. $F = k\rho^{\alpha}R^{\beta}V^{\gamma}\eta^{\delta}$ using dimensional analysis identify the relation between LHS and RHS.
k a constant, density, R length, v velocity then eta coefficient of viscousity. As I don't remember options I am not providing here
24.V(x)= $V_0(\frac{x}{L} + \frac{L}{x} + 2V_0)$ then the ground state energy is
a. V_0 b. $\frac{2h}{L}\sqrt{\frac{V_0}{m}}$ c. $\frac{h}{L}\sqrt{\frac{V_0}{m}}$ d. $\frac{h}{L}\sqrt{\frac{V_0}{2m}}$
25. The potential V= $\frac{1}{2}$ kx ² for a particle of mass m $\psi(x, t + \tau) = \psi(x, t)$ then the minimum time is
a. $\sqrt{\frac{m}{k}}$ b. $2\pi\sqrt{\frac{m}{k}}$ c. $\pi\sqrt{\frac{m}{k}}$ d. $4\pi\sqrt{\frac{m}{k}}$
$\sqrt{\kappa}$ $\sqrt{\kappa}$ $\sqrt{\kappa}$ $\sqrt{\kappa}$ 26. A mass of m_1 is hanged from string and a mass of m_2 is attached with the mass m_1 with a string. The degrees of
freedom of the system is
a. 6 b.5 c.4 d.3
27. Eigen values of skew- hermitian(Anti Hermitian) matrix are
a. Real b.Purely imaginary or zero c. Exaxtly zero d.None.
28. A collection of N two level system is at the bath temperature T. The number of exciting systems are a. 0 b.N/2 c. 3N/4 d.N
29. Consider the ESR spectrum of Cu ⁺² and Cu ⁺ find the correct statement
a. Cu ⁺² shows ESR spectrum and Cu ⁺ does not show ESR spectrum
b. Cu ⁺² does not shows ESR spectrum and Cu ⁺ show ESR spectrum
c. Cu ⁺² and Cu ⁺ does not show ESR spectrum
d. None

30. A container volume is divided into 3:1 by using a partition. The number of Ne molecules are 1000 in volume and the number of He molecules are 100 in smaller volume. To get equilibrium the partition is the ratio Ne to He molecules in the larger volume is	_
a. 10:1 b.1:10 c.3:1 d.1:3	
31. The gas which has maximum average speed is a. O ₂ b. N ₂ c. NO ₂ d. CO ₂	
32. A state of a particle is given by $(x) = \sqrt{\frac{1}{7}}a_1 + \sqrt{\frac{4}{7}}a_2 + \sqrt{\frac{2}{7}}a_3$. Then the probability of finding the	particle in a_2
state is	
a. $\frac{4}{7}$ b. $\sqrt{\frac{4}{7}}$ c. $\sqrt{\frac{2}{7}}$ d. $\frac{1}{7}$	
33. C-14 is used to determine the ages of fossils. In a certain fossil it is found that the radio activity is $\frac{1}{8}$ or	of the fossil
now. If the half life of the c-14 is 5600 years then the age of the fossil is a. 25000years b. 50000 Years c. 16800 d. 5600 years 34. Two ends A and B of wire of length 'l' is converted into a circle of radius R. If the ρ is the resistance length of the wire. Another wire joining the A and B passing through the centre. That wire also having ρ resistance per unit length. Then find the resistance between the points A and B.	_
a. 0.5 ρR b 0.6 ρR c. 0.8 ρR d.0.9 ρR	
35 36	
37.At z=0 f(z)= $\sqrt{\frac{z}{\sin z}}$ having	
a. one pole andpoint b. Both pole and A.P c. only A.P d.none 38. $\{x,p\} = 1$ then the Possion braket $\{x^2+2px+p^2\} =$ a. 0 b. p^2 c. $2x+p$ d.1. 39. The colour which has maximum angle of diffraction at the straight edge is a. Blue b.Green c. Yellow d.Red. 40. The operator $\left(\frac{d}{dx}-x\right)\left(\frac{d}{dx}-x\right)=$ a. $\left(\frac{d}{dx}-x\right)^2$ b. $\left(\frac{d^2}{dx^2}-2x\frac{d}{dx}-x^2\right)$ c. $\left(\frac{d^2}{dx^2}-x\frac{d}{dx}-x^2\right)$ d. None	
41. Consider a parallel plate capacitor separated by a distance. Now one plate of the parallel plate capacitor $\frac{dx}{dx} = \frac{dx}{dx} = \frac$	itor is tilted so
that the capacitance of the capacitor becomes	
a. Increases b. Decreases c. Remains same. d.zero,	
42.If the displacement current term is absent in the maxwell's equations thena. Magnetic monopoles will existb. Electric dipoles will not exist.	
c. Charge continuity is violated. d. Lenz law has not meaning	
43. A liner harmonic oscillator having frequency ω . A force of $F(t)Sin(\Omega t)$ is applied then ω (This ques	stion is
difficult to remember to me)	
44.In order to find the interatomic distance between two molecules of a compound we require X ray diffractormeter, Screen,	
45	
46. The electric filed vector is given by $E = E_0 \cos(kz - wt) - E_0 \sin(kz - wt)$ then the type of the of the wave	polarization
	e polarized.
47. In a quantum mechanical system $H 1>= 2>=2 1>$ Then eigen values of the operator H are	· P · · · · · · ·
a. 1,2 b. ± 1 c. ± 2 d. $\pm \sqrt{2}$	
48.Identify in which parity is conserved	
a. $\frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + (x+2)^2 + 2y^2 + z^2$ b. $\frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + y^2 + x^2 + (z-1)^2$	

b. $\frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + (x)^2 + 2y^2 + 2z$

d.
$$\frac{1}{2}(p_1^2+p_2^2+p_3^2)+(x)^2+2(y-1)^2+z^2$$

49. There are five particles in a quantum mechanical system. The spin of particle is -1/2. The energy of each particle is 1eV, Then the total energy of the system is..

a. 5eV

b. 9eV

c. 13eV

d. 12eV

50. In a thermodynamic system $S = A(VE)^{\frac{1}{3}}$ where A is a constant S is entropy V is volume, E is energy. Then the temperature of the system is..if A=1, V=1 and E=1

Answers.. a .0 b. 1 c. log 3 d. infinite.