UPSEE-2011 MODEL TEST PAPER

PAPER 1 (For candidates appearing for B.Tech./B.Pharm/B.Tech[Ag]/B.Tech [Bio. Tech.]

(PHYSICS, CHEMISTRY and MATHEMATICS)

General Instructions:

- o This model paper contain three parts of Physics, Chemistry and Mathematics
- o Each Group contains *fifty questions* carrying *four marks* against each question
- o There is no *negative* marking
- For familiarizing the students with multiple correct MCQ's each part has been divided in three sections (A, B & C). However, in the exam no such separate sections will be defined, the students must answer correctly all the options in order to get marks for the question.
 - Section A contains questions with only one correct answer
 - Section B contains questions with only two correct answer
 - o Section C contains questions with more than two correct answer

PARTI

Physics (200 Marks)

Section-A

(c) MLQ^{-2}

(d) $M^{-1}L^2Q^{-1}$

The following questions have only one option correct

1. The dimensional formula for permeability is

(a) $M^2L^2Q^{-1}$

2.	Two masses <i>M</i> and 2 <i>M</i> are attached wi massless pulley. If the pulley is accelerate			
(á	a) $\frac{M(g+a)}{3}$ (b) $\frac{4M(g-a)}{3}$ (c)	$\frac{4M(g+a)}{3}$	(d) $\frac{M(g-a)}{3}$	
3.	A ball is thrown upwards. It returns to quantities remain constant?	ground descr	ibing a parabola.	Which of the following
	(a) The vertical component of momentum	n (b) T	The horizontal com	ponent of velocity
	(c) The speed of the ball	(d)	The KE of the ball	
4.	A boy sitting on the top most berth in the	e compartmer	nt of a train which i	s just going to stop on a

- 4. A boy sitting on the top most berth in the compartment of a train which is just going to stop on a railway station, drops an apple aiming at the open hand of his brother sitting vertically below his hand at a distance of above 2 metre. The apple will fall
 - (a) Precisely on the hand of his brother
 - (b) slightly away from hand of his brother in direction of motion of train

(b) ML²Q⁻²

(c) Slightly away from hand of his brother in direction opposite to direction of motion of the

	train				
	(d) none of the above				
5.	According to Kepler's, II lav	v, the radius vector of a plar	net relative to sun sv	weeps out e	equal areas
	in equal intervals of time. T	he law is a consequence of o	conservation of cons	servation of	:
	(a) linear momentum		(b) angular momer	ntum	
	(c) energy		(d) Newton's law o	f gravitatio	n
6.	When Detergent like surf is	added to pure water, the si	urface tension		
	(a) increases, (b) o	decreases (c) is unchang	ed	(d) become	es zero
7.	Earth is flattened at poles a	and bulged at the equator. T	his is due to		
	(a) earth revolves round the	e sun in elliptical orbit			
		pinning about its axis is mor	e at the equator		
	-	nore at the equator than at	·		
	(d) none of these				
8.	At 0°C a square steel bar of	of 1 cm side is rigidly clamp	ed at both ends so	that its leng	gth cannot
		of steel is $20 \times 10^{10} \text{ Nm}^{-2}$ an			
		ture is raised to 10°C, the fo			
	(a) 2000 N	(b) 2100 N	(c) 2200 N		d) 4467 N
9.	Two point charges Q and	-3Q are placed at some of	listance apart. If th	e electric f	ield at the
	location of Q is E, then at the		•		
	(a) <i>–E</i>	(b) <i>E</i> /3	(c) −3 <i>E</i>	(c	d) <i>–E/</i> 3
10.		ze and of constant 2 and 3 r	espectively fill up sr		
		ratio of capacities in two po			
	(a) 24/25	(b) 25/24	(c) 4/5		d) 5/4
11.	What force must be exert	ed to immerse a wooden c	ube of side 4 cm a	nd specific	gravity 0.6
	completely in water			,	J ,
	(a) 38.4 gwt	(b) 64 gwt	(c) 25.6 gwt	(d	d) 54.4 gwt
12.	The coefficient of superficia	al expansion of a solid is eta It:	s coefficient of cubic	al expansio	n is
	(a) (2/3)β	(b) (3/2) β	(c) 2β	(c	d) 3β
13.	22g of CO ₂ at 27°C is mixed	with 16g of O ₂ at 37°C. If bo	oth gases are conside	ered as idea	al, then the
	temperature of mixture is				
	(a) 32°C	(b) 27°C	(c) 37°C	(d	d) 30.5°C
14.	If the temperature of the s	un is doubled, the rate of e	nergy received on e	arth will be	increased
	by a factor of				
	(a) 2	(b) 4	(c) 8	(d	d) 16
15.	The insulation property of	air breaks down at intens	ity of electric field	of 3MV/m	maximum
	charge that can be given to a sphere of diameter 5 m is				
	(a) 2×10^{-2} C (b) 2×10^{-2}	(c) 2×10^{-4} (d) 2×1	LO ⁻⁵ C		
16.	The correct relation between	en the specific resistance S a	nd resistance per ur	nit length P	is
	(a) S = AP	(b) $S = A/P$	(c) $S = P/A$		d) S = P
17.	N identical drops each cha	rged to energy E form a big	drop. The energy o	of the big d	rop will be
	(a) <i>NE</i>	(b) <i>E/N</i>	(c) N ^{5/3} E	(d	d) N ² E
18.	A cell of emf 1.5 V having a	finite internal resistance is	connected to a load	resistance	of 2 Ω . For
		he internal resistance of the			
	(a) 4 (b) 0.5 (c) 2	(d) none of these			
19.	A long solenoid has a radiu	us a and number of turns p	er unit length is <i>n.</i> I	f it carries a	a current <i>i</i> ,
		xis is directly proportional to			
	(a) ani	(b) <i>ni</i>	(c) (<i>ni</i>)/a	(d	d) n²i
20.		stance coil is doubly wound			
	(a) current	(b) resistance	(c) self-induction	(c	d) eddy
	current losses				·

21. The ratio of specific charge *elm* of a proton to that of an α -particle is

(a) 1:4

(b) 1:2

(c) 1:1/4

(d) 1/2

22. When a point source of light is 1 m away from a photoelectric cell, the photoelectric current is found to be 1 mA If the same source be placed at 3 m from the same photoelectric cell, the photoelectric current will be

(a) 1/9 mA

(b) 1/3 mA

(c) 3 mA

(d) 9 mA

23. A sample of a radioactive substance contains 2,828 atoms. If its half-life is two days, how many atoms will be left intact in the sample after one day?

(a) 2,000

(b) 1,000

(c) 1,414

(d) 707

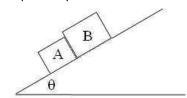
24. A wave is reflected from a free boundary. The change of phase on reflection will be

(a) zero

(b) $\pi/4$

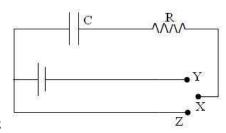
(c) $\pi/2$

(d) π

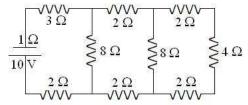

25. A short linear object of length b lies along the axis of a concave mirror of focal length f at a distance u from the pole of the mirror. The size of the image is approximately equal to

(a) $b\left(\frac{u-f}{f}\right)^{1/2}$ (b) $b\left(\frac{u-f}{f}\right)$ (c) $b\left(\frac{f}{u-f}\right)^{1/2}$

Instructions: The following questions have two correct answers and you must tick both the correct choices for getting any marks for that question.

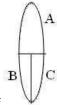

A particle moves with initial velocity v_0 and retardation αv where v is the velocity at any time t.

- (a) The particle will cover a total distance v_0/α
 - (b) The particle will come to rest after time after time t = $1/\alpha$
 - (c) The particle will move for a very long time
 - (d) The velocity of particle will become $v_0/2$ after time $1/\alpha$
- 26. The two blocks A and B of equal masses are initially in contact when released from rest on the inclined plane. The coefficients of friction between the inclined plane and A and B are μ_1 and μ_2 respectively


- (a) If $\mu_1 > \mu_2$ the blocks will always remain in contact
- (b) If $\mu_1 < \mu_2$ the blocks will slide down with different accelerations
- (c) If $\mu_1 > \mu_2$, the blocks will have a common acceleration of $\frac{1}{2}(\mu_1 + \mu_2)g\sin\theta$
- (d) If $\mu_1 < \mu_2$ the blocks will have a common acceleration $\frac{\mu_1 \mu_2 g}{\mu_1 + \mu_2} \sin \theta$
- 27. A simple pendulum rotates in a horizontal plane with an angular velocity of ω about a fixed point P in gravity free space. There is a negative charge at P. The bob gradually emits photoelectrons (ignore the change in energy and momentum of photons and electrons). The total force acting on the bob is T.
 - (a) T will decrease and ω will increase
 - (b) T will decrease and ω will remain constant
 - (c) T and ω will remain unchanged
 - (d) The elastic strain in the string will decrease

28. A ring (R) disc (D) and solid radii, all start together fro	d sphere (S) and hollow spher m rest at the top of an incline			
 (a) All of them will reach the bottom of incline together (b) The body with maximum radius will reach the bottom first. (c) They will reach the bottom in the order of S,D,H,R (d) All of them will have same kinetic energy at the bottom 29. A coin is placed on horizontal platform, which undergoes vertical simple harmonic motion of angular velocity ω. The amplitude of oscillation is gradually increased. The coin will leave contact for the first time (a) At the highest position of platform (b) At the mean position of the platform 				
(c) for an amplitude of g/ ω	2	(d) for an amplitude of $\frac{\sqrt{g}}{g}$	<u>-</u>	
30. A spring balance reads W ₁ a tank of liquid is kept on and weighing machine rea	t. When the ball is immersed	om it. A weighing machine re	ads W ₂ when	
(a) W₁ > W₃31. A double star system rotal attraction. Let the stars has	(b) $W_1 < W_3$	their separation be L. Their t		
32. A spherical body of radius	· ·	• •	•	
(a) P \propto r	(b) $P \propto r^2$	(c) R \propto r ²	(d) $R \propto \frac{1}{r}$	
33. The stationary waves set up on a string have the equation $y = (2mm) sin[(6.28m^{-1})x] cos(\omega t) .$ This stationary wave is created by two identical waves, of amplitude A each moving in opposite directions along the string (a) A = 2 mm (b) A = 1 mm (c) The smallest length of string is 50 cm (d) The smallest length of string is 2 m 34. A transverse sinusoidal wave of amplitude A, wavelength λ and frequency f is travelling on a stretched string. The maximum speed of any point on string is v/10 where v is the speed of propagation of the wave. If A = 10^{-3} m and v = 10 m/s then λ and f are given as (a) $\lambda = 2\pi \times 10^{-2}$ m (b) $\lambda = 10^{-3}$ m (c) f = $10^3/(2\pi)$ Hz (d) f = 10^3 Hz				
35. A dipole of moment \mathbf{p} is placed torque is $\boldsymbol{\tau}$	aced in uniform electric field	E. The force on the dipole is	F and the	
(a) F = 0 36. In a parallel plate capacito	ates is F. Then F is proportion (b) A ⁻¹	al to (c) d	(d) d ⁻¹	
	oduced in the resistance R. X		_	

which H₂ heat is produced in R


- (a) $H_1 = H_2$
- (b) $H_1 = \frac{1}{2}H_2$
- (c) $H_1 = 2H_2$
- (d) The maximum energy stored in C at any time is H₂
- 38. In the circuit shown, the cell has emf of 10 V and internal resistance of 1 Ω .

- (a) current through 3 Ω resistor is 1 A.
- (b) the current through 3 Ω resistor is 0.5 A
- (c) The current through 4 Ω is 0.5 A
- (d) The current though the 4 Ω resistor is 0.25 A
- 39. A flat circular coil carrying a current, has a magnetic moment μ.
 - (a) μ has only magnitude and no direction
 - (b) The direction of μ is along the normal to the plane of coil
 - (c) The direction of μ depends on the direction of current flow
 - (d) The direction of $\boldsymbol{\mu}$ does not change if the current in coil is reversed
- 40. A charged particle is fired at an angle θ to a uniform magnetic field directed along the x axis.

During this motion along a helical path, the particle will

- (a) never move parallel to x axis
- (b) move parallel to x axis during every rotation for all values of θ
- (c) move parallel to the x axis at least once during every rotation if θ = 45°
- (d) never move perpendicular to x axis
- 41. Which of the following assertions are correct?
 - (a) A neutron can decay to a proton only inside a nucleus
 - (b) A proton can change to a neutron only inside a nucleus
 - (c) An isolated neutron can change into a proton
 - (d) An isolated proton can change into a neutron
- 42. A thin symmetric double convex lens of power P is cut into three parts, A B and C as shown, then

power of

(a) A is P

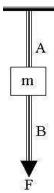
(b) A is 2P

(c) B is P/2

(d) B is P/4

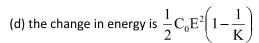
- 43. In a Young's double slit experiment, let A and B be two slits. A thin film of thickness t and refractive index μ is placed in front of the slit A. Let β be the fringe width. The central maximum will shift
 - a) towards A
- (b) towards B
- (c) by $t(\mu 1)\frac{\beta}{\lambda}$
- (d) by $t\mu \frac{\beta}{\lambda}$
- 44. A ray of light travelling in transparent medium falls on a surface separating the medium from air, at an angle of incidence of 45° . The ray undergoes total internal reflection. If n is the refractive index of medium, select the possible values of n from the following
 - (a) 1.3

(b) 1.4


(c) 1.5

(d) 1.6

Section-C


Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

45. The wires A and B shown in the figure are made of same material, and have radii R_A and R_B respectively. The block between them has mass m. When the force F is mg/3, one of the wires

breaks

- (a) A wire break before B if $R_A = R_B$
- (b) A wire break before B if $R_A < 2R_B$.
- (c) Either A or B may break if $R_A = 2R_B$
- (d) The lengths of A and B must be known to predict which wire will break
- 46. A ball of mass m is attached to the lower end of light vertical spring of force constant k. the upper end of the spring is fixed. A ball is released from the rest with the spring in its normal (unstretched) length and comes to rest again after descending through a distance x
 - (a) x = mg/k
 - (b) x = 2mg/k
 - (c) The ball will have no acceleration at a position where it has descended through x/2
 - (d) The ball will have an upward acceleration equal to g at its lowermost position
- 47. A parallel plate air capacitor of capacitance C₀ is connected to a cell of emf E and then after charging capacitor is disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it
 - (a) The potential difference between the plates decreases K times
 - (b) The energy stored in capacitor decreases K times
 - (c) The change in energy is $\frac{1}{2}C_0E^2(K-1)$

- 48. When a nucleus with atomic number Z and mass number A undergoes a radioactive decay process
 - (a) Both Z and A decrease, if the process is $\boldsymbol{\alpha}$ decay
 - (b) Z will decrease but A will not change if the process is β^+ decay
 - (c) Z will increase and A will remain unchanged if the process is β^- decay
 - (d) Z will increase and A will remain unchanged if the process is γ decay
- 49. If a converging beam of light is incident on a concave mirror, the reflected light
 - (a) may form a real image
 - (b) must form a real image
 - (c) may form a virtual image
 - (d) may be a parallel beam

The

	P	PART-II CHEMISTRY	(200 Marks)		
		SECTION -A	,		
		SECTION -A			
foli	lowing questions have o	only one correct option, tick	the correct answer.		
1.	Vant Hoff factor for 0.1	.M Ba(NO_3) ₂ is 2.74. Degree of	of dissociation is:		
	a. 91.3%	b. 87%	c. 100%	d. 74	
2.	In Arrhenius plot, interd	cept is equal to:			
	a. –E _a /R	b. In A	c. ln K	d. log a	
3.	Minimum concentratio	n of an electrolyte which is a	able to cause coagulation of a	a sol is:	
	a. emulsification value	b. saponification value			
	c. flocculation number	d. gold number			
4.	Number of lone pairs o	f electrons on Xe in XeF ₂ , Xe	F ₄ , XeF ₆ are:		
	a. 3,2,1	b. 4, 3, 2	c. 2, 3,1	d.3,2,0	
5.	IF ₅ shows which type of	f hybridization:			
	a. sp ³ d ²	b. sp ³ d ³	c. sp ² d	d. d ² sp ³	
6.	Which halide is most ac	cidic:			
	a. PCl ₃	b. SbCl ₃	c. BiCl ₃	d.CCl ₄	
7. Which compound is formed when excess KCN is added to aq.CuSO ₄ :					
	a. Cu(CN) ₂	b. $K_2[Cu(CN)_6]$	c. K[Cu(CN) ₂]		
	d. $K_3[Cu(CN)_4]$				
8.	which of the following is an outer orbital complex:				
	a. $[Ni(NH_3)_6]^{2+}$	b. $[Co(NH_3)_6]^{3+}$	c. $[Fe(H_2O)_6]^{2+}$		
	d. [Co(CN) ₆] ⁴⁻				
9.	According to crystal fie	ld split theory the fourth ele	ectron coming into the d orbi	tal goes to e _g	
	if:				
	a. Δ _o > p	b. Δ _o < p	c. $\Delta_o = p$	d. $\Delta_o = 0$	
10.	$[CoF_6]^{3-}$ shows which ty		2	2 2	
	a. sp ³ d ²	b. sp ³ d ³	c. sp ² d	d. d ² sp ³	

11.	which of the followin	g exhibit stereoisomerism	n:	
	a. 2-methyl butane	b. 3-methyl butyne	c. 3-methyl butano	ic acid
	d. 2-methyl butanoid	cacid		
12.	Identify the state fun	ction:		
	a. q	b. q-w	c. q/w	d. q+w
13.	An ideal gas expands	in volume from 10 ⁻³ m ³ t	to 10^{-2} m 3 at 300K agains	t a constant pressure
	of 10 ⁵ Nm ⁻² . What is	the work done:		
	a. –900 kJ	b. –900 kJ	c. 270 kJ	d. 900 kJ
14.	An organic compour	d C₃H₀O did not show silv	ver mirror test but shows	aldol condensation
	The compound is:			
	a. CH ₂ =CH-CH ₂ -OH	b. CH ₃ -CH ₂ -CHO c	. CH ₃ -CO-CH ₃ d. CH ₂ =	=CH−OCH₃
15.	In which mode of exp	pression, the concentratio	n remains independent o	f temperature:
	a. Molarity	b. Normality	c. Formality	d. Molality
16.	Which of the following	ng has lowest freezing poi	nt:	
	a. 0.1 molal solution	of urea	b. 0.1 molal solution	n of sucrose
	c. 0.1 molal solution	of acetic acid	d. 0.1 molal solution	n of calcium chloride
17.	A crossed aldol c	ondensation between a	aromatic aldehydes/keto	ones with aliphation
	aldehydes/ketones is	:		
	a. Williamson's syntl	nesis	b. Sandmeyer's rea	ction
	c. Claisen-Schmidt co	ondensation	d. Reimer-Tiemann	reaction
18.		will show positive carbyla		
	a. Aniline	b. N-methylaniline	c. N,N dimethylanili	ne
10	d. Dimethylamine	and the confet of		
19.	Diazotization is a pro			
		erentiated from the other	groups	
	b. Benzene diazoniur			
		erentiated from other grou	ups	
20	d. None	- l d		in in.
20.		oloured gas formed when		
21	a. N ₂ O ₅	b. N ₂ O ₄	c. NO ₂	d. N ₂ O ₃
21.		ed in presence of phospho		al Alalaharahaa
22	a. Acid amides	b. Acid anhydrides	c. Acid chlorides	d. Aldehydes
22.		ng undergo Cannizaro's re		
	a. Ethanol	b. Formaldehyde	c. Acetaldehyde	
22	d. None of these	and a section of the control of the section		
23.		n reaction benzoyl chloride		al A : : :
2.4	a. Benzoic acid	b. Benzaldehyde	c. Phenol	d. Aniline
24.		f potassium Ethanoate yie		d Dogge
2.5	a. Ethene	b. Methane	c. Ethane	d. Propane
25.	IUPAC name of [Pt(N		داد ند داد	
		romonitroplatinum (IV) ch		
		romonitrochloroplatinum		
		hloronitroplatinum (IV) ch		
	a. Triamminenitroch	orobromoplatinum(IV) ch	ioride	

26. H₂O	2 is stored in dark colo	ured bottles as:			
a. D	ecomposes to form wa	iter	b. Decomposes to form wa	iter & oxygen	
c. D	ecomposes to form ox	ygen	d. Decomposes to form	hydrogen &	
oxy	gen				
		SECTION-B			
Instructions	s: The following question	ons have two correct ans	swers and you must tick bot	h the correct	
	getting any marks for		,		
27. Frei	undlich adsorption isot	herm is numerically equa	l to:		
a. x	د/m=Kp ^{1/n}		b. x/m=log K+ n log p		
c. lo	og x/m= log K + n log p		d. $\log x/m = \log K + 1/n \log$	р	
28. Wh	ich of the following sho	w free movement aroun	d C–C bond:		
a. E	thane b.	ethene	c. propene	d. propane	
	an adiabatic expansion	-			
	PV^{Y} = constant b. PV^{Y-1} = constant	TV ^{Y-1} = constant	c. TP^Y = constant		
		cleophile & electrophile:			
		CH₃Cl	c. CH₃CN	d. HCHO	
	-	-	owing compounds on treating		
	es the same alkane:	a from which of the folic	wing compounds on treating	ig with water	
_		-CH-CH-CICH- c (CI	H ₃) ₃ CCl d. (CH ₃) ₂ CH ₂ CH ₂ Cl		
			1 mole of methanal , etha		
	panal:	our our ozonorysis gives	I mole of medianary edia	nar a z kete	
•	H ₂ =CHCH=CHCH ₃		b.CH ₃ CH=CHCH=CHCH ₃		
	H ₂ =C(CH ₃)CH=CHCH ₃		d. CH ₂ =CHC(CH ₃)=CHCH ₃		
		cies have electron releas			
		−CH ₂ CH ₃	c. —CH₃	dC_6H_5	
34. Wh	ich of the following spe		Š	0 0	
a. C	l ⁺ b.	AICl ₃	c. NH ₃	d. CH ₃ OCH ₃	
35. Wh	ich of the following pai	r of compounds are home	ologous		
a. 1	–propanol and 2–propa	anol	b. 1-propanol and 1-butan	ol	
c. 2	–propanol and 2–meth	yl 2–propanol	d. ethanol and propanol		
36. Cyc	lohexane exists in whic	h form:–			
a. k	ooat b.	chair	c. planar	d.crown	
37. Wh	ich of the following is/a	are correct about Inductiv	e effect		
a. It	is a temporary effect				
b. it	is an electron displace	ment effect			
c. It	is always electron rele	asing in nature			
d. it	d. it depends on the distance from the I effect group				
38. Wh	ich of the following is/a	are correct			
a. F	Resonance is delocaliza	tion of sigma electrons			
b. I	Hyperconjugation is de	ocalization of pi electron	S		

c. Hyperconjugation is delocalization of sigma electrons d. Resonance is delocalization of pi electrons 39. Alcohols may act as: d. Bronsted acid a. Oxidizing agent b. Reducing agent c. Lewis base 40. Grignard's reagent gives secondary alcohols with: a. Ethanal b. Methanal c. Propanone d. Propanal 41. Which of the following can be distinguished using coupling reaction: a. Phenol b. Benzene dizonium chloride c. Aniline d. Toluene 42. Grignard's reagent is used to prepare which of the following: a. Secondary alcohols b. Nitro compounds d. Amine c. Carboxylic acids 43. tert-butyl methyl ether on heating with HI gives: b. Methyl iodide a. tert-butyl iodide c. Methanol d. Isobutylene 44. Identify Lewis acids: b. H⁺ a. HCl c. H₂SO₄ d. BCl₃ 45. For a rate expression Rate = $k[A][B]^2$: a. reaction is first order w.r.t. B b. reaction is second order w.r.t. A c. reaction is first order w.r.t . A d. reaction is second order w.r.t. B

SECTION-C

Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

46. White P₄ has:

a. 6 P-P single bonds b. 4 P-P single bonds

c. 4 lone pairs

d. PPP angle of 60

47. Which of the following represents a spontaneous process:

a. $\Delta H = +$, $\Delta S = +$

b. $\Delta H = -$, $\Delta S = -$

c. $\Delta H = -$, $\Delta S = +$

d. $\Delta H = +$, $\Delta S = -$

48. For the reaction $PCl_5 \leftarrow \rightarrow PCl_3 + Cl_2$, rate of forward reaction increases by:

a. putting inert gas at constant V

b. Removing Cl₂

c. putting inert gas at constant P

d. putting PCI₅ gas at constant V

49. Which compounds show only sp³ hybridized carbon:

a. cycloalkanes

b. straight chain alkanes

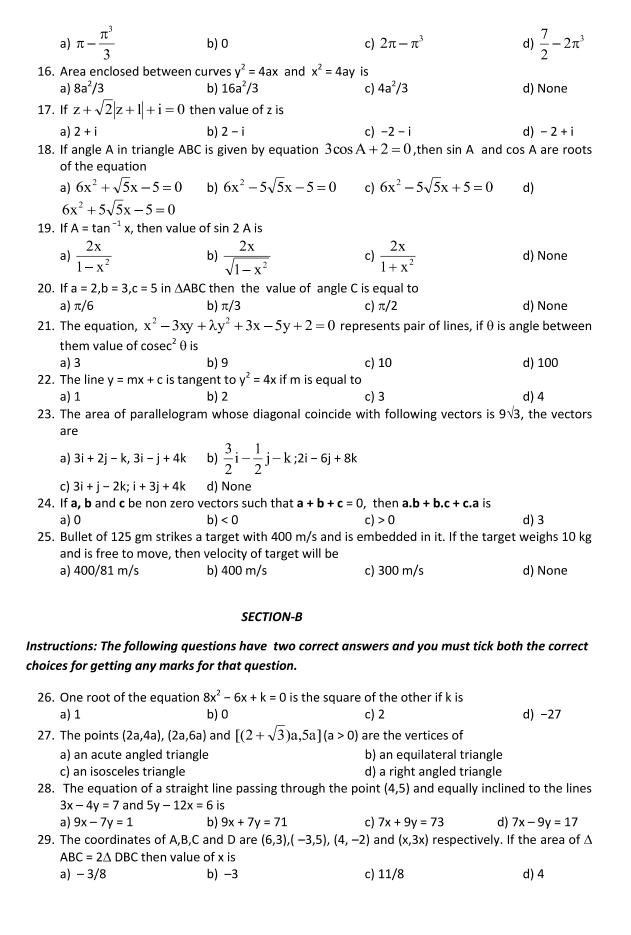
c. branched chain alkanes d. benzene

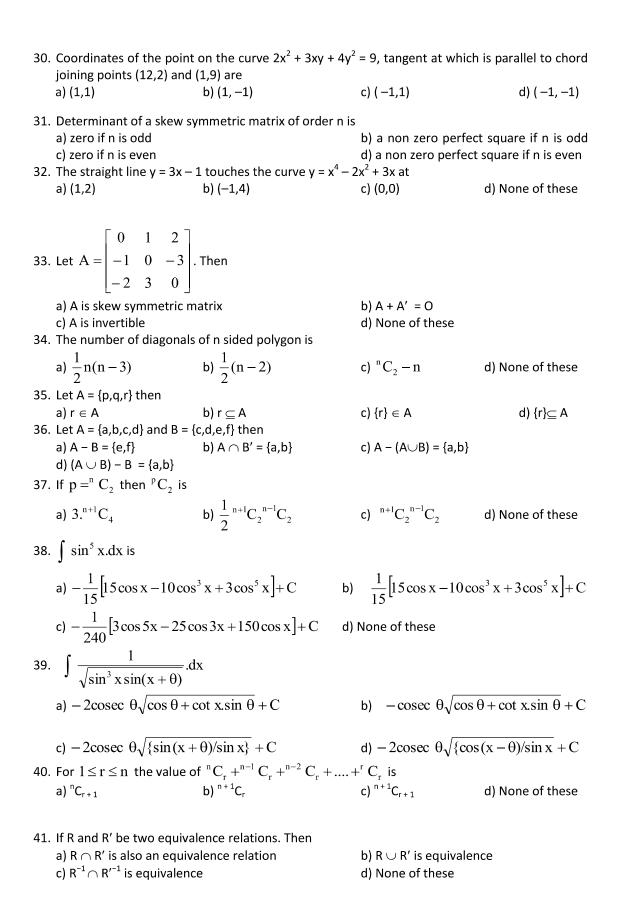
50. Which of the following species are planar:

a. Tertiary butyl free radical

b. Tertiary butyl carbocation

c. Tertiary butyl carboanion


d. Alkyl carboanion


PART –III –Mathematics (200 Marks)

Section A

The following questions have only one correct option, tick the correct answer.

1.If a,b,c are in GP, then the	equation $ax^2 + 2bx + c = 0$	and $dx^2 + 2ex + f = 0$ are i	n	
a) AP	b) GP	c) HP	d) None	
2. A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio is				
a) 5	b) 4	c) 3	d) 2	
3. The coefficient of x^p and x^q	in the expansion of $(1 + x)^{p+}$	^q are		
a) equal		b) equal with opposite sign		
c) reciprocal of each othe	r	d) None		
4. If $x \in R$ and $\alpha = \frac{x^2}{(1+x^4)}$, t	then			
a) $0 \le \alpha \le 2$	b) $0 \le \alpha \le 1$	c) 0 ≤ α ≤ ¼	d) $0 \le \alpha \le \frac{1}{2}$	
5.A bag contains 100 tickets i	numbered 1 to 100, two tick	ets are drawn. If it is given th	nat maximum	
number on chosen ticket	s is not more that 10, The	probability that minimum n	umber is 5 is	
a) 1/3	b) 1/9 _	c) 1/1330	d) 13/15	
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 10 \end{bmatrix}$	$\begin{bmatrix} 0 & -4 & -1 \end{bmatrix}$			
6. If $A = \begin{bmatrix} 3 & 4 & 2 \end{bmatrix}; B = \begin{bmatrix} -1 \end{bmatrix}$	11 5 0 then			
6. If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$; $B = \begin{bmatrix} 10 \\ -11 \\ 9 \end{bmatrix}$	-5 -1			
	_	a) AD = 2DA	d) Nama	
a) AB = BA 7.If the difference between	b) AB = 2BA	c) AB = 3BA	d) None	
a) 189	b) 21	c) 31.5	d) 48.5	
8.In a group of 52 students,	•	•	•	
persons who take coffee				
a) 19	b) 36	c) data insufficient	d) None	
$\sqrt{x^2-1}$				
9. Value of $\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}$ is				
a) 1	b) 0	c) -1	d) 1/2	
•	•	· -	<i>u, _,_</i>	
10. If $y = \tan^{-1} \frac{1 - x^2}{1 + x^2}$, then $\frac{dy}{dx}$ is				
a) $1/(1 + x^4)$	b) $-2x/(1+x^4)$ c) $-1/(1+x^4)$	γ ⁴)	d) None	
$(4\mathbf{v})$	(2+3x) dy	· ,	a, rione	
11. Let $y = tan^{-1} \left(\frac{4x}{1 + 5x^2} \right) + \frac{1}{1 + 5x^2}$	$+\tan^{-1}\left(\frac{2+3x}{3-2x}\right)$; then $\frac{dy}{dx}$ is			
a) $\frac{5}{1+25x^2}$	b) — 1	c) $\frac{5}{\sqrt{1+25x^2}}$ d) $\frac{1}{\sqrt{1+25x^2}}$	$\frac{1}{1+25x^2}$	
			$1 + 25x^2$	
12. The line $bx + ay = ab touch$	thes the curve $y = be^{-x/a}$ at position			
a) (a, b/a)	b) (-a, b/a)	c) (a, a/b)	d) None	
13. If $f(x) = kx^3 - 9x^2 + 9x + 3$			of k is	
a) k < 3	b) k > 3	c) k ≤ 3	d) None	
14. $\int_{-1}^{1} 1 - x dx$ equals				
a) – 2	b) 0	c) 2	d) 4	
15. $\int_{-\pi}^{\pi} (1-x^2) \sin x \cdot \cos^2 x \cdot dx$	lx			

42. The value of x for which the tangent to the curve $y = (x + 2)^2$ passes through the origin is

$$c) -2$$

43. The equation of tangent to circle $x^2 + y^2 = 25$ and passing through (- 2,11) is

a)
$$4x + 3y = 25$$

b)
$$3x + 4y = 38$$

c)
$$7x + 24y = 230$$

c)
$$7x + 24y = 230$$
 d) $24x - 7y + 125 = 0$

44. Let p = 3i + 4j, q = 5i, $r = \frac{1}{4}$ (p + q) and 2s = p - q, then

a)
$$|p+r| = |q+s|$$

a)
$$|p+r| = |q+s|$$
 b) $|p+\lambda s| = |r-\lambda s|$

c)
$$|p + q| = |p - q|$$

d) r is perpendicular to s.

45. The vector **a,b**, and **c** are of same length and taken pair wise, they form equal angles. If a = i + j, $\mathbf{b} = \mathbf{i} + \mathbf{k}$ then the coordinates of \mathbf{c} are

SECTION-C

Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

46. In the parabola $y^2 - 2y + 8x - 23 = 0$

- a) focus is (1,1)
- b) directrix is x = 5
- c) length of double ordinate at a distance 3 units from the vertex is $4\sqrt{6}$
- d) length of latus rectum is 8
- 47. Differential coefficient of $log_{10} x \ wrt \ x^2$ is

a)
$$\frac{1}{2x^2}$$

$$b) \frac{\log_{10} e}{2x^2}$$

a)
$$\frac{1}{2x^2}$$
 b) $\frac{\log_{10} e}{2x^2}$ c) $\frac{1}{2x^2 \log_e 10}$ d) $\frac{\log_{10} \sqrt{e}}{x^2}$

$$d) \frac{\log_{10} \sqrt{x^2}}{x^2}$$

48. If $(1+x)^{1/x} = a_0 + a_1x + a_2x^2 + a_3x^3 + ...$ then

a)
$$a_0 = e$$

b)
$$a_1 = e/x$$

a)
$$a_0 = e$$
 b) $a_1 = e/x$ c) $a_3 = 11e/24$

d) None of these

49. $\int \cos(\log x) dx$

a)
$$\frac{x}{\sqrt{2}}\cos\left(\log x - \frac{\pi}{4}\right)$$

b)
$$\frac{x}{2} (\cos \log x + \sin \log x)$$

c)
$$\frac{x}{\sqrt{2}}\sin(\log x + \pi/4)$$

d)
$$\frac{x}{2} (\cos \log x - \sin \log x)$$

50. A particle is projected with a velocity u, at an angle α from the foot of an inclined plane whose inclination to the horizontal is β . It strikes the plane at right angles if

a) 2 tan
$$(\alpha - \beta)$$
 = cot β

b) cot
$$(\alpha - \beta) = 2 \tan \beta$$

c)
$$\tan \alpha = \cot \beta + 2 \tan \beta$$

d) None of these