Mm Chemistry

482)

Set No. 1

15P/206/2

Question Booklet No

4059

AND THE PROPERTY OF THE PROPER	
(To be filled up by the candidate by blue/b	lack ball-point nen!
Roll No.	pour pary
Roll No. (Write the digits in words)	
Serial No. of OMR Answer Sheet	***************************************
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

उपर्युक्त निर्देश हिन्दी में अन्तिम आकरण-पृष्ठ पर दिये गए हैं।

No. of Printed Pages: 36+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2½ Hours/घण्टे

Full Marks/पूर्णांक : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- The plots of gaseous densities vs temperature and of liquid densities vs temperature for a substance converge at a temperature. The temperature is called
 - (1) boiling point

- (2) Boyle temperature
- (3) critical temperature
- (4) inversion temperature

(339)

1

2.	The RMS speed of $He(g)$ at 0 °C is	1300 m-s ⁻¹ .	The most	probable	speed	of the
	gas will be		*			

(1) 1300 m-s⁻¹

(2) 866·6 m-s⁻¹

(3) 1592·2 m-s⁻¹

(4) 1061·4 m-s⁻¹

3. The pseudo first order rate constants for the cobalt-catalysed auto-oxidation of toluene in acetic acid at 87 °C at different concentrations of Co(III) are

 $\{Co(III)\}/M$ 0.053 0.084 0.118 0.172 $k/10^{-5}s^{-1}$ 1.47 2.93 5.68 11.58

for [toluene] $_0 = 0.5 M$.

The order with respect to [Co(III)] is

(1) 2

(2) 1.5

(3) 1

 $(4) \cdot 0.5$

4. For the reaction

$$2AB_2 \stackrel{k_1}{\rightleftharpoons} A_2B_4$$

the reaction rate for A2B4 formation is

(1) $2k_1[AB_2]-k_{-1}[A_2B_4]$

 $(2) (2k_1 - k_{-1})[AB_2]$

(3) $\frac{2k_1}{k_{-1}} \{AB_2\}$

(4) $2k_1[AB_2]^2 - k_{-1}[A_2B_4]$

5. The enzymolysis of a substrate has a Michaelis constant of 0.035 mol-L⁻¹ at 25 °C. The maximum rate of the reaction is 1.50×10⁻³ mol-L⁻¹-s⁻¹. What should be the concentration of the substrate for which the reaction rate would be reduced to 0.75×10⁻³ mol-L⁻¹-s⁻¹?

(1) 0.070 mol-L-1

(2) 0-494 mol-L-1

(3) 0.035 mol-L-1

(4) 0·017 mol-L⁻¹

(339)

-	A					
6.	The entropy of ac Arrhenius equati	ctivation for a rea on as	ction is related to	the frequency i	actor (A) o	
	(1) A	(2) In A	(3) exp (A)	(4) exp (-	A }	
7.	The mechanism	of the reaction	ė.	9		
		H_2O_2 (aq) $\rightarrow F$	$H_2O(1) + \frac{1}{2}O_2(g)$	-		
	catalysed by Br	ions is				
	$H_2O_2(aq)+1$	$Br^{-}(aq) \rightarrow H_2O(l)$	+ BrO (aq) (slow)		
	$BrO^{-}(aq) + H_2O_2(aq) \rightarrow H_2O(l) + O_2(g) + Br^{-}(aq)(fast)$					
90	The overall order	of the reaction is	3			
	(1) 0	(2) 1	(3) 2	(4) 3	3	
8.	Consider the follo	wing mechanism			G G	
		$A_2 \Rightarrow 2$	A (fast)		¥	
		$A + B \rightarrow$	P (slow)			
12	The overall order	of the reaction is	l .	ч		
<u>e</u>	(1) 0.5	(2) 1	(3) 1.5	(4) 2	· •	
9.	The plot of the data CO on charcoal a adsorption follow?	a on p(/Torr)/V t 273 K has bee	(/cm³) against p en found linear. V	(/Torr) for ads What isotherm	orption of does the	
	(1) Langmuir isoth	erm	(2) Freundlich i	sotherm		
ě	(3) BET isotherm		(4) Temkin isotl	nerm		
(339)	2	3			(P.T.O.)	
a	27 F		a f		a (5)	

		#		
10.	A crystal system	characterised by a	*b * c and α = γ =	=90°, β≠90° is
	(1) triclinic	(2) monoclinic	(3) rhombic	(4) trigonal
11.	The Miller indices	of the planes with	intercepts 4a, 6b ar	$d \infty$ whereas b and c are
	(1) (3, 2, 0)	(2) (2, 3, 0)	(3) (0, 2, 3)	(4) (4, 6, ∞)
12.	A powder diffrac (110), (200), (211 cell is	tion photograph fr), (220), (310), (222	om tungsten show), (321), (400), 7	vs lines which index as The symmetry of the unit
	(1) simple cubic		(2) body-centred	d cubic
	(3) face-centred	cubic	(4) edge-centred	i cubic
13.	At the critical t	solution temperatu	ire of phenol-wate	r system, the degree of
	(1) 0	(2) 1	(3) 2	(4) 3
14.	equal to		*	g.s. unit is rad. 1 grey is
# # # # # # # # # # # # # # # # # # #	(1) 1 rad.	(2) 10 rad	(3) 100 rad	(4) 1000 rad
	* *,	3	150	
(339	9)	9:	4	

15.	The molar conductance of potassium	n chloride (10 ⁻⁴	M) increases	substantially
	with increase in frequency of the ap	plied potential.	This is due to	minimisation
	of			

- (1) frictional forces
- (2) electrophoretic effect
- (3) relation effect
- (4) electrophoretic and asymmetry effects

16. Which of the following cases for a perfect gas has q = 0?

- (1) Isothermal isobaric expansion
- (2) Reversible isothermal expansion
- (3) Isobaric adiabatic expansion
- (4) Isothermal isobaric irreversible compression

17. For the process $H_2O(s) \rightarrow H_2O(l)$ in an ice-water bath at 0 °C, which of the following statements is true?

(1)
$$T\Delta S > \Delta H$$

(2)
$$\Delta H > T \Delta S^1$$

(3)
$$\Delta H = T\Delta S^1$$

18. One of the Gibbs equations

$$dG = -S dT + V dP + \Sigma \mu_i dn_i$$

does not apply when the system

- (1) is in thermal equilibrium
- (2) is in mechanical equilibrium
- (3) involves P-V work only
- (4) consists of any number of phases

240

5

19,	A real solution is	one which	3	
	(1) obeys Raoult's	law	(2) obeys Henry's	law
	(3) does not obey	Henry's law	(4) does not obey	Raoult's law
		e e		
20 .	The molar conductive when c is sufficient		ectrolyte decreases	with concentration (c)
	(1) linearly with o	,	(2) linearly with a	21/2
	(3) linearly with l	og c	(4) exponentially	with c
21.	Under what cond independent of te		ium constant (K)	of a reaction becomes
	(1) $\Delta G^{\circ} < 0$	(2) $\Delta H^{\circ} < 0$	(3) ΔH°>0	$(4) \Delta H^{\circ} = 0$
		*		3 3
22.	한 경영하게 많아 전기를 내려가면 하는 이렇게 하면 하게 되었다면 하나 하나 있다.	7.0010000000000000000000000000000000000	is + 0 · 76 V and the c cell <i>M</i> <i>M</i> ²⁺ <i>A</i> ⁺	reduction potential of A is
	(1) I · O1 V	(2)0·51 V	(3) O 51 V	(4) -1 01 V
23.				ule in a 100 cm ³ vessel der the same condition
	(1) 5·54×10 ²⁶	(2) $3 \cdot 29 \times 10^{26}$	$(3) 21 25 \times 10^{26}$	(4) 7.83×10^{26}
				*
339)			5	*
71 A				XI

24.	The rotational partition function (q^R) of an AB molecule at 27 °	°C is	19.6.	What
	would be its q^R at 327 °C?	127		

- (1) 19-6
- (2) 27.7
- (3) 39.2
- (4) 55·3

Which of the following molecules does not show a pure rotational spectrum?

(I) HCl

(2) trans-CH₂Cl₂

(3) as-CH₂Cl₂

(4) CHCl₃

¹H ($g_1 = 5.5857$) resonates at 500 MHz in an NMR spectrometer operating at 26. 11.7 teals. What magnetic field would be necessary to observe the resonance of 13 C ($g_1 = 1.4046$) at 500 MHz?

(1) 11.7 tesla

(2) 2·9 tesla

(3) 23·4 tesla

(4) 46.8 tesla

The Gibbs-Duhem equation is 27.

(1) $\sum_{i} \mu_{i} dn_{i} = 0$

(3) $\sum_{i} n_i d\mu_i = 0$

(2) $\sum_{i} \mu_{i} dn_{i} \neq 0$ (4) $\sum_{i} n_{i} d\mu_{i} \neq 0$

Which solvent would you prefer to determine the molar mass of a non-volatile 28. non-ionic solute by freezing point depression method?

- (1) Water $(K_f = 1.86/\text{K (mol-kg}^{-1})^{-1})$
- (2) Phenol $(K_f = 7.27/\text{K (mol-kg}^{-1})^{-1})$
- (3) Benzene $(K_f = 5.12/\text{K (mol-kg}^{-1})^{-1})$
- (4) Camphor $(K_f = 40/\text{K (mol-kg}^{-1})^{-1})$

CO₂?

	(1) 1	(2) 2	(3) 3	(4) 4	
30.	The minimur	n energy for which	of the following s	yatema ia zero?	
	(1) H-atom	•	6		
	(2) A vibratir	ng diatomic molecu	le		
	(3) A rotating	g diatomic molecul			
	(4) A molecu	le confined to a 3I)-box	2	
31.	$T_{1/2}$ of ³ H is 1 during an acc	2·3 years. If 48·0 mident, what mass of	ng of ³ H is released this nuclide would	from a nuclear power premain after 49-2 years	olant s?
	(1) 6·0 mg	(2) 3·0 mg	(3) 12·0 mg	(4) 24·0 mg	
32.	excited from /	i = 1 to $n = 2$ state by	y a light of frequen-	sional box of length L carry v . If the length of the e $n = 1$ to $n = 2$ trans	har
	(1) v/4	(2) v/2	(3) 2v	(4) 4v	
33.	mediatich ca	made to undergo thusing the transitiuld you expect to i	on for HI equals	rom $J = 0 \rightarrow J = 1$. The is v. Approximately wansition in DI?	l igh t hich
	(1) 2v	(2) √2 v	(3) v/2	(4) v / √2	
339)	a"		8		1
	-	a a		•	

29. The IR spectrum of H₂O shows 3 bands. How many bands do you predict for

15P/206/2 S	et No.
-------------	--------

- 34. The radial distribution function for 1s state, $4\pi r^2 \psi_{1s}^2$, indicates that
 - (1) the most probable value of the distance from the nucleus is zero
 - (2) the average value of r is zero
 - (3) the average value of r is greater than the most probable value
 - $\{4\}$ the average value of r is less than the most probable value
- 35. Which one of the following statements about H₂ is false?
 - (1) The non-degenerate LCAO-MOs (without spin) must be either symmetric or antisymmetric
 - (2) The lowest MO (without spin) of the molecule is antisymmetric for inversion
 - (3) The MOs transform into AOs of the helium ion as the two nuclei are fused together
 - (4) The ground state has a multiplicity of two
- 36. Which of the following functions are 'well behaved' quantum mechanically?
 - (1) $\exp(-ax^2)$
- (2) $\exp(-ax)$
- (3) x^2
- (4) x
- 37. Which of the following is not an eigenfunction of $\frac{d^2}{dx^2}$ operator?
 - (1) exp (ax)

(2) $\exp(ax^2)$

(3) ax + b

(4) cos x

₹ .

36. The operator $-\frac{\hbar^2}{2m} \cdot \frac{d^2}{dx^2}$ represents

(1) linear momentum

(2) angular momentum

(3) total energy

(4) kinetic energy

39. The electrophilic aromatic substitution proceeds through an intermediate

(1) phenyl cation

(2) σ complex

(3) benzene anion

(4) benzyne

40. Optically active 2-octanol rapidly loses its optical activity when exposed to the following

(1) Dilute acid

(2) Dilute base

(3) Light

(4) Humidity

41. The relative rates of nitration of R—C₆H₅, where R=CH₃, NO₂, OH and Cl, is

- (1) CH₃ > OH > NO₂ > Cl
- (2) CH₃ > OH > Cl > NO₂
- (3) OH > CH₃ > NO₂ > Cl
- (4) OH > CH₂ > Cl > NO₂

42. Which of the following statements is not true for the E2 reactions?

- (1) Bimolecular reaction
- (2) Reactivity order is RI > RBr > RCl
- (3) rearrangement occurs
- (4) reactivity order of RX is 3° > 2° > 1°

43. List the following compounds in the correct order of decreasing acidity

- (A)
- (B)
- (C)
- (D)

44. Which of the following carbocations is the most stable?

45. Ziegler-Natta catalyst is

(1) Et₂O · BF₃

(2) Et₃Al-TiCl₄

(3) Na-naphthalene

(4) Pd/CaCO₃/quinoline

46. Pyridine undergoes electrophilic substitution with fuming H₂SO₄ at elevated temperature to give

- (1) pyridine-3-sulphonic acid
- (2) pyridine-2-sulphonic acid
- (3) pyridine-4-sulphonic acid
- (4) All of the above

47. Which of the following elimination reactions will give 1-butene as the major product?

- 48. Aldehydes and ketones can be converted into 1,2-dicarbonyl compounds by reaction with
 - (1) periodic acid

(2) lead tetracetate

(3) peracetic acid

- (4) selenium dioxide
- 49. Which of the following haloalkanes will undergo hydrolysis most readily?
 - (1) (CH₃)₃CBr

(2) (CH₃)₃CC!

(3) (CH₃)₃CF

- (4) (CH₃)₃CI
- 50. The reactant, M in the reaction below

can be

(1) o-bromoanisole

- (2) m-bromoanisole
- (3) either of o- or m-bromoanisole
- (4) None of the above

(339)

 The product formed in the following electrophilic aromatic substitution reaction is

- (1)
- (2)
- (3)
- (4) None of the above

52. Which of the following compounds absorbs UV radiation?

(1) Ethanol

(2) Butylamine

(3) Acetone

(4) Chlorohexane

53. Benzaldehyde may be prepared by any of the following methods. Which one of these is called Stephen's method?

(1)
$$C_6H_5CN \xrightarrow{SnCl_2} \xrightarrow{H_2O}$$

(4)
$$C_6H_5CH_2Cl + (CH_2)_6N_4 \xrightarrow{H_2O/EtOH} \xrightarrow{H^+}$$

54. The reagent used in the transformation

is

(1) LiAlH4

(2) NaBH₄

(3) Zn(Hg)/HCl

(4) H₂NNH₂, OH⁶

55. Which of the following secondary alcohols can be prepared from the reaction of methyl formate with excess Grignard reagent?

(1) CH₃CH₂CHCH₃

ρн

(2) CH₃CHCH₃

OH

(3) CH₃CHCH₂CH₂CH₃

(4) CH₃CHC₆H₅ OH

56. Consider the following statements about conformational isomers:

- (A) They are interconverted by rotation about single bond
- (B) The energy barrier separating them is less than 15 kcal/mole
- (C) They are best represented by means of Fischer projection formulae

 Of these statements:
- (1) Ail (A), (B) and (C) are correct
- (2) Only (B) and (C) are correct
- (3) Only (A) and (C) are correct
- (4) Only (A) and (B) are correct

(339)

67 .	Which of t	the following is	not th	e product	of	ozonolysis	of	citral?
-------------	------------	------------------	--------	-----------	----	------------	----	---------

(1) Glyoxal

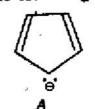
(2) Acetone

(3) Acetaidehyde

(4) Laevulaldehyde

Arrange the following three chlorides in decreasing order of $S_N 1$ reactivity $CH_3CH_2CHCH_3$ H₂C=CHCHCH₃ CH3CH2CH2CI

В


(1) A>B>C

(2) B > C > A

(3) B > A > C

(4) C > B > A

Arrange the following carbanions in order of their decreasing stability 59.

(C₆H₅)₃ Ĉ:

(СН3)3 с: :сн3

D

Answer codes :

(1) A > B > C > D

(2) B > C > D > A

(3) A > B > D > C

(4) B > A > C > D

The α - and β -forms of D-glucopyranose are called 60.

- (1) anomers
- (2) enantiomers
- (3) epimers
- (4) diastereomers

(339)

15

61.	. The methyl D-glucoside is mad	e by treating D-glucose with the following
	(1) CH ₃ OH, HCl	(2) aqueous CH ₃ OH
	(3) (CH ₃) ₂ SO ₄ , NaOH	(4) CH ₃ OCH ₃ , LiA]H ₄
62.	Select among the following carbo glucose as the only product	ohydrates whose complete hydrolysis give D(+
	(A) Dextrin (B) Starch	(C) Sucrose (D) Cellulose
	The correct answer code is	*
	(1) (A), (B), (C)	(2) (B), (C), (D)
	(3) (A), (C), (D)	(4) (A), (B), (D)
63.	How many stereocentres are pre- glycylalanylalanine?	sent in the small, naturally occurring protein
	(1) One (2) Two	(3) Three (4) Zero
64,	The reagent used in Edman me	thod of N-terminal analysis of peptides is
	(1) phenyl isothiocyanate	(2) 2,4-dichlorofluorobenzene
	(3) 2,4-dinitrofluorobenzene	(4) benzyl chloroformate
65.	Select the reagent required to be	ring about the following transformation
	(CH ₃) ₂ C=CH−C−CH ₃ 	[?] (CH ₃) ₂ C=CH—COOH
	(1) KMnO ₄ , NaOH	(2) K ₂ Cr ₂ O ₇ /H ₂ SO ₄
	(3) Cl ₂ / OH ^e , then H ⁺	(4) m-chloroperbenzoic acid
(339)		16
		v

66. Which one of the following would clearly prove the configuration of cis-3-hexene from trans-3-hexene?

(1) Boiling point

(2) Rate of hydrogenation

(3) Dipole moment

(4) Infrared spectrum

67. Naphthalene undergoes nitration with a mixture of conc. HNO₃ and H₂SO₄ at 50 °C to give mainly

- (1) 1-nitronaphthalene
- (2) 2-nitronaphthalene
- (3) 1,3-dinitronaphthalene
- (4) 1,4-dinitronaphthalene

68. The most convenient spectroscopic technique to establish the presence of inter-molecular hydrogen bonding in hydroxy compounds is

(1) UV

(2) IR

(3) NMR

(4) None of the above

69. The following reaction proceeds through

$$CH_3 \xrightarrow{Cl_2} CH_2Cl$$

- (1) Nucleophilic substitution
- (2) Electrophilic substitution
- (3) Free radical substitution
- (4) Rearrangement

(339)

17

70. Which one of the following aromatic substitution reactions is reversible?

(1) Nitration

(2) Sulphonation

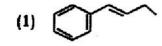
(3) Halogenation

(4) Friedel-Crafts acylation

71. Allylic bromination is carried out by

- (1) HBr, H₂O₂
- (2) HOBr
- (3) Br2, CS2
- (4) NBS

72. Which one of the following is the final product Z in the reaction sequence given below?


$$Me_2C=O + HCN \longrightarrow X \xrightarrow{H_3O^+} Y \xrightarrow{Conc. H_2SO_4} Z$$

- (1) CH₂=C(CH₃)COOH
- (2) (CH₃)₂C(OH)COOH
- (3) HOCH₂CH(CH₃)COOH
- (4) CH₃CH=CHCOOH

73. Which one of the following reactions is correctly shown?

- (1) ROH + NaOH ---- RONa + H₂O
- (2) ROH + NaHCO₃ ----- RONa + H₂CO₃
- (3) 2ROH + Na₂CO₃ ---- 2RONa + H₂CO₃
- (4) PhOH + NaOH ---- PhONa + H₂O

74. Identify the chiral compound that is oxidized with alkaline KMnO₄ to benzoic acid

75. Natural rubber is a polymer made up of the following monomer units

- (1) Butadiene
- (2) Neoprene
- (3) Isoprene
- (4) Chloroprene

76. Which of the following compounds can be used as a solvent in Friedel-Crafts reaction?

(1) Acetic anhydride

(2) Nitrobenzene

(3) Anisole .

(4) Toluene

77. Oxygen may be prepared by heating potassium chlorate. What is the other product?

(1) Potassium oxide .

- (2) Potassium chloride
- (3) Potassium hypochlorite
- (4) Potassium chlorite

78. From each pair given below, identify the ion which is larger in size :

$$[Co^{2+}, Co^{3+}]$$
 $[Fe^{2+}, Zn^{2+}]$ $[Na^+, F^-]$ $[O^{2-}, S^{2-}]$

(339)

19

79.	now many unpair	ed electrons are the	re ir	an atom of silv	er in	its ground state?
	(1) 0	(2) 1	(3)	2	(4)	4 .
80.	How many moles	of P ₄ O ₁₀ will react	wit	h one mole of	wate	:r?
	(1) 2 moles	(2) 6 moles	(3)	1/3 mole	(4)	1/6 mole
81.	If 22 g of N ₂ O ₅ ret the percentage yie	acts with 10 g of wa	ater	to produce 22 p	g of s	nitric acid, what i
	(1) 32%	(2) 69%	(3)	87%	(4)	100%
82.	10 ml of 0-10 N so the resultant solu- the titre value at	tion is titrated again	addenst (ed to 20 ml 0:10 0:10 N sodium h) N e	sulphuric acid and exide. What will be
	(1) 5 ml	(2) 10 ml	(3)	20 ml	(4)	30 ml
83.	or socium nydroxic	on of a substance g de are added. The po d. The substance r	rècij	oitate dissolves :	itate whe	when a few drops n excess of sodium
	(1) aluminium su	lphate	(2)	silver nitrate		# #
	(3) cadmium chlo	ride	(4)	mercuric chlor	ide	
84.	Which reagent ma	y be used to preci	pita	te barium from	aqu	cous solutions?
	(1) Hydrochloric a			Sulphuric acid		9
	(3) Silver nitrate	*	(4)	Ammonium ch	lorid	le
(339)		20				*
₹M				29		•

85.	A non-stoichic Ag is present	ometric oxide of silver in the form Ag ²⁺ ?	has composition A	g _{1.8} O. What percentage of
9	(1) 11%	(2) 14%	(3) 20%	(4) 25%
86.	A sample of was	ater contains 200 p.p respect to Ca?	.m. of Ca ²⁺ in it. W	hat is the molality of the
	(1) 0-2 m	(2) 2 m	(3) 5×10 ⁻³ m	(4) 0·05 m
87.	Which of the	following is not a cr	ystalline substance	•
	(1) Glass	(2) Quartz	(3) Chalk	(4) Diamond
88.	What is the ch	narge (n) on the silic	ate ion Si ₂ O ₇ ⁿ ?	: E
٠	(1) -2	(2) -4	(3) -6	(4) -7
89.	Silver is extrac the presence o	ted from the crude m f air. The role of Na	netal by leaching wi	th a solution of NaCN in
	(1) oxidize Ag	to Ag⁺	(2) form the con	nplex [Ag(CN) ₄] ³⁻
12	(3) form the co	omplex [Ag(CN) ₄] ²⁻	(4) form the con	nplex [Ag(CN) ₂]
90.	CoCl ₄ ²⁻ and Co	(H ₂ O) ₆ ²⁺ have differen	nt colours. This is	because
	(1) they have (Co in different oxida	tion states	
	(2) they have o	different coordination	geometries	
	(3) they have d	lifferent number of t	inpaired electrons	я ч
	(4) they have (o in different oxidat	tion states and bou	and to different ligands
(339)		2	1 *	(P.T.O.)
	t			

91 .	Cul ₂ is unstable,	because it readily	decomposes to	× n
	(1) Cu and I^-	(2) Cu and I2	(3) Cul and I2	(4) Cul and 1
92.		g the chlorides, Zr n aqueous solutio		AlCl ₃ is dissociated to
	(1) ZnCl ₂	(2) HgCl ₂	(3) BaCl ₂	(4) AICI ₃
93.	Which one amon	g the given ions,	has the highest pol	arizing power?
W	(1) Na+	(2) Ca ²⁺	(3) Mg ²⁺	(4) Al ³⁺
94.	Which compound	d can act as a Lev	wis acid as well as	a Lewis base?
	(1) H ₂ O	(2) SnCl ₂	(3) NH ₃	(4) BF ₃
95.	several oxides as	well as some fluor	rides. Which one, an	l structure is adopted by nong the given formulae, erovskite structure?
	(1) CaTiF ₃	(2) KZnF ₃	(3) CaTiF ₅	(4) CaMgF ₃
96.			tions of Cu ²⁺ , the c	yanide ion is similar to
	(1) CO	(2) C1	(3) I ₂	(4) I -
(339)	- -		22	

15	P/	20	6,	12	Set	No.	1
----	----	----	----	----	-----	-----	---

07	tirl:	12:		1		** *	
y 1.	A UTICIT	ngana	CHI	icad	TO	nnkage	isomers?

- (1) Azide
- (2) Cyanate
- (3) Oxalate
- (4) Nitrate

98. The boron mineral, borax contains the anion, $[H_4B_4O_9]^{2-}$. What is the formal oxidation number of B in this anion?

- (1) 2.5
- (2) 3
- (3) 3.5
- (4) 4

99. Two isomers are obtained for Pt(NH₃)₂Cl₂, while only one isomer is obtained for Ni(NH₃)₂Cl₂. This is because

- (1) the two complexes differ in the oxidation state of the metal
- (2) the two complexes differ in the oxidation state of the metal as well as coordination number
- (3) the two complexes differ in their coordination number
- (4) the two complexes differ in their coordination geometry

100. Consider the following reaction:

$$[Co(NH_3)_4Cl_2]^+ + H_2O \rightarrow [Co(NH_3)_4(H_2O)Cl]^{2+} + Cl^{-1}$$

The above reaction involves

(1) substitution

(2) substitution and reduction

(3) oxidation

(4) substitution and oxidation

 ${339}$

23

Identify the acids in the following two reactions: 101.

$$NOF + ClF_3 = NO + ClF_4$$

$$XeO_3 + OH^- = HXeO_4^-$$

(1) CIF₃ and XeO₃

(2) CIF₃ and OH⁻

(3) NOF and OH-

(4) NOF and XeO₃

What are the formal oxidation states of the iron atoms labeled (A) and (B) in the compound Fe4 [FeB)(CN)6 ls ?

- (1) Fe^(A), 2+ and Fe^(B), 3+
- (2) Fe^(A), 2 + and Fe^(B), 4 +
- (3) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 3 + (4) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 2 +

The magnetic moment of $Co(H_2O)_6^{3+}$ is zero and that of $Mn(CN)_6^{3-}$ is 2.9 BM. From this it may be concluded that

- (1) both ions are high spin
- (2) both ions are low spin
- (3) $Co(H_2O)_6^{3+}$ is low spin, $Mn(CN)_6^{3-}$ is high spin
- (4) Co(H₂O)₆³⁺ is diamagnetic, Mn(CN)₆³⁻ is high spin

Which among the following compounds/ions are diamagnetic? 104.

CuCl2"; Cu(SCN); CoCl2"; Ni(CO)4; PdCl2-

- (1) CoCl2- and PdCl2-
- (2) CuCl4-, Cu(SCN) and Ni(CO)4
- (3) Cu(SCN) and Ni(CO)4
- (4) Cu(SCN), Ni(CO)4 and PdC12-

Which one is an example of a 'sandwich' compound? 105.

(I) Cr(C6H6)2

(2) Cr(CO)₆

(3) Cr₂(CH₃COO)₂

(4) [Pt(NH₃)₂] [PtCl₄]

Which one, among the listed ions, will have the highest magnetic moment? 106.

- (1) Cu(H₂O)²⁺
- (2) Ni(NH₃)₆²⁺ (3) MnCl₄²⁻
- (4) Ru(NH₂)₅²⁺

Which of the following shows the correct relationship between the atomic radius 107. (r) of Cu, Ag and Au?

(1) 'Cu < 'Ag < 'Au

(2) 'Cu << 'Ag < 'Au

(3) Cu < Ag << Au

(4) 'Cu > 'Ag > 'Au

Which of the following molecules/ions have planar structures? 108.

- (i) NH₃
- (ii) SO₄²⁻
- (iii) CQ 2-
- (iv) BF,

- (1) All four
- (2) (ii) and (iii)
- (3) (iii) and (iv)
- (4) Only (iv)

(339)

25

109.	Which of the follo	wing are paramagn	etic compounds?						
	(i) Oxygen		(ii) Copper sulpha	ate					
	(iii) Carbon monos	cide	(iv) Nitric oxide						
	(v) Ozone								
	(1) (i), (ii), (iii)	(2) (i), (ii), (iv)	(3) (ii), (iii), (v)	(4) (i), (iv), (v)					
110.	Complete the sent	tence : An octahed	ral complex, MA ₄ B						
	(1) will have two	constitutional ison	ners						
	(2) will have two	stereoisomers							
	(3) cannot show i	somerism							
	(4) will be optical	ly active	. 1						
111.	Which two of the	following molecule	s/ions have plana	r structures?					
	(i) XeF ₄	(ii) ClO.	(iii) PtCl 4	(iv) MnO ₄					
	(1) (i) and (iii)	(2) (i) and (ii)	(3) (ii) and (iii)	(4) (ii) and (iv)					
112.	500 H - 100 H	ysis, Ag is detected cond groups. This		while Pb is detected in					
	(1) AgCl is much	more soluble than	PbCl ₂						
	(2) AgCl is much less soluble than PbCl ₂								
	(3) the solubilities due to its bla		re same, but traces	s of PbS are easily seen					
	(4) AgS is soluble	, but PbS is insol	uble						
(339)		26							

Three examples of molecules/ion	s having line	ear geometry	may be given as
(1) CO ₂ , NCS ² and NO ₂ ⁴	(2) CO ₂	, NCS and	NO ₂
(3) NO ₂ , N ₃ and NCS	(4) ClO ₂	, ${\rm CO_2}$ and N	o <u>;</u>
The average of 64 results is how mesults?	any more tin	nes reliable ti	nan the average of 4
(1) 2 (2) 4	(3) 8	(4	16
Which of the following statements	s is true?		
(1) The variance is the square ro	ot of the sta	indard deviat	ion .
(2) Precise values are always acc	urate		
(3) The numbers 0-02040 contain	s only four	significant fi	gures
(4) Two of the above are true			ř g
the purity of a sample. Titrator B	obtains corre	sponding val	lues of 13.12% and
(1) less accurate but more precis	e		ž
(2) more accurate and more preci	ise		
(3) less accurate and less precise		•	
(4) more accurate but less precise	E	¥	* F
* ,	07		<i>п</i> то.
	(1) CO ₂ , NCS ⁻ and NO ₂ ⁺ (3) NO ₂ , N ₃ ⁻ and NCS ⁻ The average of 64 results is how mare sults? (1) 2 (2) 4 Which of the following statements (1) The variance is the square road (2) Precise values are always accompleted (3) The numbers 0-02040 contains (4) Two of the above are true Titrator A obtains a mean value of the purity of a sample. Titrator B obtains a mean value of the purity of a sample of the purity is 1 (1) less accurate but more precise (2) more accurate and more precise (3) less accurate and less precise (4) more accurate but less precise (4) more accurate but less precise (5)	(1) CO ₂ , NCS ⁻ and NO ₂ ⁺ (2) CO ₂ (3) NO ₂ , N ₃ and NCS ⁻ (4) ClO ₂ The average of 64 results is how many more timesults? (1) 2 (2) 4 (3) 8 Which of the following statements is true? (1) The variance is the square root of the state) (2) Precise values are always accurate (3) The numbers 0-02040 contains only four (4) Two of the above are true Titrator A obtains a mean value of 12-96% and the purity of a sample. Titrator B obtains corre	(3) NO ₂ , N ₃ and NCS ⁻ (4) ClO ₂ , CO ₂ and Note that the average of 64 results is how many more times reliable the results? (1) 2 (2) 4 (3) 8 (4) Which of the following statements is true? (1) The variance is the square root of the standard deviate (2) Precise values are always accurate (3) The numbers 0-02040 contains only four significant fig. (4) Two of the above are true Titrator A obtains a mean value of 12-96% and a standard of the purity of a sample. Titrator B obtains corresponding value 0-08. The true percent purity is 13-08. Compared to titrate (1) less accurate but more precise (2) more accurate and more precise (3) less accurate and less precise (4) more accurate but less precise

15P/206/2 Set No.	.5P/	206	12	Set	No.	1
-------------------	------	-----	----	-----	-----	---

117.	Which of the following titrations (0·10 M solution) will give the largest change in pH at the end point?
	(1) Benzoic acid with NaOH
	(2) Formic acid with NaOH
¥	(3) Pyridine with HCl
	(4) Monochloroacetic acid with NaOH
118.	Which is the strongest conjugate base?
	(1) OAc
119.	Which of these statements is true?
	(1) An aprotic solvent has acidic properties
	(2) The titration reaction is more complete the smaller the autoprotolysis constant
	(3) Dissociation into ions is necessary for successful acid-base titrations
	(4) A low dielectric constant is desirable for amphiprotic solvents
120.	A precipitate of Fe(OH) ₃ is contaminated with Mg(OH) ₂ . The best way to get rid of the impurity is
	(1) washing (2) digestion (3) ignition (4) reprecipitation
(339)	28

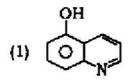
- 121. Line spectra are emitted by
 - (1) hot solids
 - (2) excited polyatomic molecules
 - (3) molecules in the ground electronic state
 - (4) excited atoms and monoatomic ions
- 122. The hydrogen or deuterium discharge tube can be used as a source of continuous ultraviolet radiation for spectrophotometers because of
 - (1) the characteristics of chopper-modulated radiation
 - (2) pressure broadening of hydrogen or deuterium emission lines
 - (3) the great sensitivity of photomultiplier tubes
 - (4) the narrow band pass of modern grating monochromators
- 123. In chromatography, a substance for which the distribution coefficient, k is zero may be used to estimate
 - (1) the volume within the column occupied by the packing material
 - (2) the total volume of the column
 - (3) the volume within the pores of the packing material
 - (4) the volume within the column available in the mobile phase

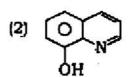
- 124. The separation factor, S, in chromatography depends upon
 - (1) the length of the column
 - (2) the square root of the length of the column
 - (3) the natures of the stationary liquid phase
 - (4) the number of theoretical plates in the column
- 125. A neutral molecule such as ethanol or sugar which has found its way into the pores of a typical anion-exchange resin can be eliminated
 - (1) only by replacement with a cation
 - (2) only by replacement with an anion
 - (3) only if replaced by another organic molecule on a one-for-one exchange basis
 - (4) by flushing out with water
- 126. Which of the following statements is false in normal phase adsorption?
 - (1) The more polar a compound, the more strongly it will be adsorbed from a solution
 - (2) A high molecular weight favours adsorption, other factors being equal
 - (3) The more polar the solvent, the stronger the adsorption of the solute
 - (4) The adsorption isotherm is usually nonlinear

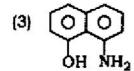
(339)

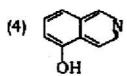
- 127. The best measure of the quantity of a solute in liquid chromatography is
 - (1) the height of the elution band
 - (2) the area of the elution band
 - (3) baseline width of the elution band
 - (4) the retention volume
- 128. Which of the following would be the fastest way to decide which adsorbent and what solvent system to use for a large-scale chromatographic separation of an organic reaction product from materials found in side reactions?
 - (1) Paper chromatography
 - (2) Affinity chromatography
 - (3) TLC
 - (4) Adsorption chromatography with gradient elution
- 129. To deionize tap water by ion exchange for laboratory use, the best approach employs
 - (1) a column containing a strong acid cation exchanger in the hydrogen form
 - (2) a column containing a strong-base anion exchanger in the hydroxyl form
 - (3) a mixed bed column containing a strong acid cation exchanger in the solution form and a strong-base anion exchanger in the chloride form
 - (4) A mixed bed column containing a strong acid cation exchanger in the hydrogen form and a strong-base anion exchanger in the hydroxyl form

130.	Which of the follo	wing is used in a	irchae	cological stud	lies?	
	(1) Carbon	(2) Uranium	(3)	Radium	(4)	Phosphorus
131.	Radioactive iodine	e is being used to	diag	nose the disc	asc of	r [:]
	(1) bones	(2) blood cancer	(3)	kidneys	(4)	thyroid
132.	The half-life period	l of a radioactive m	ateri	al can be dete	rmine	d with the help of
	(1) Wilson Cloud	Chamber	(2)	Geiger-Mulle	er Cou	inter
	(3) Mass spectron	neter	(4)	All of the al	oove	
	c.			e.		
133.	Graphite is used	in nuclear reactor	18			
	(1) as a lubricant		ž			
	(2) as a fuel				*	
	(3) for lining the	inside of the reac	tor a	s an insulato	r	
	(4) for reducing t	he velocity of neu	trons			
			ň.	200.0		er er
134.	Pure water does r	not conduct electr	icity	because of	ş	
	(1) has low boilin	g point	(2)	is almost ur	iionise	d
	(3) is neutral		. (4)	is readily de	compo	sed
(339)		32	2			
2.5		~	_			100


135.	The molar conductivity of a strong el	ectrolyte	
	(1) increases on dilution	*	
	(2) does not change considerably on	dilution	9
	(3) decreases on dilution	*	
3.5	(4) depends on density		
136.	Electrostatic precipitators are used separation of	as pollution control device f	or the
	(1) SO ₂		
	(2) NO _X		
	(3) hydrocarbons	•	
	(4) suspended particulate matter	260	
137.	Which of the following is responsible	for ozone layer depletion?	
48 (2)	(1) Ozone	(2) Aerosol	
Đ	(3) Chlorofluorocarbons (CFC)	(4) Smog	*
138.	Which of the following is a non-biod	egradable organic water pollutant	?
	(1) Proteins	(2) Fats	
	(3) Carbohydrates	(4) Pesticides	
(339)	33	3.	(P.T.O.)


- 139. Which of the following is very effective for isolating, separating and identifying small quantities of substances?
 - (1) Potentiometry


(2) Chromatography


(3) Solvent extraction

- (4) Conductometry
- 140. Greenhouse effect causes
 - (1) rise in temperature of the earth
 - (2) continuous rainfall
 - (3) lowering in temperature of the earth
 - (4) continuous snowing of the earth
- 141. Which of the following is the correct structure of oxine?

- 142. One mole of potassium bromate in bromate-bromide reaction produces
 - (1) one mole Br₂

(2) two moles Br₂

(3) three moles Br₂

(4) four moles Br₂

(339)

Phenolphthalein is	used as an indicate	or when transition p	oH is in the range of
(1) 1-4	(2) 4-6	(3) 8–10	(4) 10-12
Gases responsible	for acid rains are		
(1) hydrocarbon a	nd CO	(2) NO_X and SO_X	
(3). CO_X and NO_X		(4) CO and CO ₂	
Which of the follo	wing is the most t	oxic?	*
(1) CH ₃ Hg ⁺	(2) HgCl ₂	(3) Hg ₂ Cl ₂	(4) Hg metal
benzoic acid?	2		
(1) 0·164 mol	(2) 0.008 mol	(3) 0·082 mol	(4) 0·0164 mol
How many potent	ial sites are there	in an EDTA molecu	ale for bonding a metal
(1) Four	(2) Three	(3) Six	(4) Two
Water hardness is pH	determined by ED	TA titration after th	ne sample is buffered to
(1) 4	(2) 2	(3) 6	(4) 10
What minimum d solute from 50-0	istribution coefficie mL of water with	nt is needed to peri two 25.0 mL extrac	mit removal of 99% of a ctions with toluene?
(1) 18:0	(2) 09.0	(3) 27.0	(4) 36-0
	3	5	(P.T.O.)
	(1) 1-4 Gases responsible (1) hydrocarbon a (3) CO _X and NO _X Which of the follo (1) CH ₃ Hg ⁺ How many moles benzoic acid? (1) 0·164 mol How many potention? (1) Four Water hardness is pH (1) 4 What minimum d solute from 50·0	Gases responsible for acid rains are (1) hydrocarbon and CO (3) CO _X and NO _X Which of the following is the most to the control of the following is the most to the control of the following is the most to the control of the following is the most to the control of the following is the most to the control of the following is the most to the control of the following is the most to the control of the control	Gases responsible for acid rains are (1) hydrocarbon and CO (2) NO _X and SO _X (3) CO _X and NO _X (4) CO and CO ₂ Which of the following is the most toxic? (1) CH ₃ Hg ⁺ (2) HgCl ₂ (3) Hg ₂ Cl ₂ How many moles of benzoic acid (122·1 g/mol) are contibenzoic acid? (1) 0·164 mol (2) 0·008 mol (3) 0·082 mol How many potential sites are there in an EDTA molecularing? (1) Four (2) Three (3) Six Water hardness is determined by EDTA titration after the pH (1) 4 (2) 2 (3) 6 What minimum distribution coefficient is needed to persolute from 50·0 mL of water with two 25·0 mL extractions.

- The distribution coefficient for iodine between an organic solvent and $\rm H_2O$ is 85. The concentration of $\rm I_2$ remaining in the aqueous layer of the extraction of 50·0 mL of $\rm 1\cdot00\times10^{-3}~M~I_2$ with 50·0 mL of the organic solvent is 150.
 - (1) 1.16×10^{-5}
- (2) 5.28×10^{-7}
- (3) $5 \cdot 29 \times 10^{-10}$ (4) $1 \cdot 16 \times 10^{-7}$

अध्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें.
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-एत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाझ कर दें। जहाँ आवश्यक हो वहाँ प्रश्न-पुरिशका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ एत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कौई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम यृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी बृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

	ZERO	MARK	TO BE	JET 11116.	11-11-	D FOR EACH OR EACH IN FOR EACH UI	CORRECT AN NATTEMPTED		(COD	ENO. 482)	et : M.		Set-	(
1	A	Q	A	Q	A	QA	QA	QA		[7.
	3	21	4	41	4	61	81 3	101 1	Q A	Q A	QA	QA	QA	Q
	4	22	1	42	3	62 4	82 2	102 4	121 1	141 2	161	181	201	221
	1	23	4	43	2	63 2,	83	103 2	122	142 3	162	182	202	222
	4	24	3	44	4	64	84 2		123	143 3	163	183	203	223
	3	25	2	45	2	65 3	85 1	104	124 4	144 2	164	184	204	224
	2	26	4	46	1	66 3	86 3	105	125 4	145	165	185	205	225
	3	27	3	47	3	67 1	87 3	106 3	126 3	146 4	166	186	206	226
	3	28	4	48	4	68 2	88 3	107 2	127 2	147 3	167	187	207	227
	1	29	2	49	4	69 3	89 4	108 3	128 3	148 4	168	188	208	228
0	2	30	3	50	3	70 2	90 2	109 2	129 3	149	169	189	209	229
						101-	90 2	110 2	130	150	170	190	210	230
1	1	31	2,	51	4	71 4	91 3	444						
2	3	32	1	52	3	72 1	92 2	111 1	131 4	151	171	191	211	231
3	4	33	3	53	1	73 4	93 4	112 2	132 2	152	172	192	212	232
ļ	3	34	3	54	2,	74 4	94 2		133 4	153	173	193	213	232
5	3	35	2	55	2	75 3	95 2	114 4	101	154	174	194	214	234
3	3	36	1	56	4	76 2	96 4	116 1	135 2	155	175	195	215	235
7	3	37	2	57	3	77 2	97 2	117 2	136 4	156	176	196	216	236
}	4	38	4	58	2	78 3	98 2	118 1	1	157	17.7	197	217	237
)	4	39	2	59	3	79 2	99 4	119 3	138 4	158	178	198	218	238
)	2	40		60	1	80 2	100 1	120 4	139 2	159	179	199	219	239
							100	120 7	140	160	180	200	220	240