Chemistry

Time: 2 hours Marks: 60

 $[10 \times 2 = 20]$

Calculate the molarity of water if its density is 1000 kg/m³.

- The average velocity of gas molecules is 400 m/sec. Calculate its rms velocity at the same temperature.
- 3. Write down the heterogeneous catalyst involved in the polymerisation of ethylene.
- Which one is more soluble in diethyl ether anhydrous AlCl₃ or hydrous AlCl₃? Explain in terms of bonding.
- Using VSEPR theory, draw the shape of PCIs and BrF s.
- A racemic mixture of (±) 2-phenyl propanoic acid on esterification with (+) 2-butanol gives two esters. Mention the stereochemistry of the two esters produced.
- Wavelength of high energy transition of H-atoms is 91.2nm. Calculate the corresponding wavelength of He atoms.
- Match the K_e values

	-	K,
a)	Benzoic acid	3.3 × 10 ⁻⁸
b)	02М———200Н	6.3 × 10 ⁻⁶
c)	са—Соон	30.6 × 10 ⁻⁶
d)	ньсс	6.4 × 10 ⁻⁶
e)	нус—Сэсон	4.2 × 10 ⁻⁶

- 9. Write down reactions involved in the extraction of Pb. What is the oxidation number of lead in litharge?
- 10. Following two amino acids lionise and glutamine form dipeptide linkage. What are two possible dipeptides?

 $[10 \times 4 = 40]$

- 11. a) You are given marbles of diameter 10 mm. They are to be placed such that their centres are lying in a square bound by four lines each of length 40 mm. What will be the arrangements of marbles in a plane so that maximum number of marbles can be placed inside the area? Sketch the diagram and derive expression for the number of molecules per unit area.
 - b) 1 gm of charcoal adsorbs 100 ml 0.5 M CH₂COOH to form a monolayer, and thereby the molarity of CH₂COOH reduces to 0.49. Calculate the surface area of the charcoal adsorbed by each molecule of acetic acid. Surface area of charcoal = 3.01 × 10² m²/gm.
- a) Will the pH of water be same at 4°C and 25°C? Explain.
 - b) Two students use same stock solution of ZnSO₄ and a solution of CuSO₄. The emf of one cell is 0.03 V higher than the other. The conc. of CuSO₄ in the cell with higher emf value is 0.5 M. Find out the conc. of CuSO₄ in the other cell (2.203 RT/F = 0.06).

Convert

 There is a solution of p-hydroxy benzoic acid and p-amino benzoic acid. Discuss one method by which we can separate them and also write down the confirmatory tests of the functional groups present.

$$A(C_6H_{12}) \xrightarrow{HCI} B + C$$
 (C_6H_3C)

 $B \xrightarrow{alc.KOH} D$ (isomer of A)

D___ozonolysis →E (it gives negative test with Fehling solution but responds to iodoform test).

 $A \xrightarrow{\Omega \in Model} \to F + G$ (both give positive Tollen's test but do not give iodoform test).

Identify the following:

$$Na_2CO_3 \xrightarrow{9O_2} A \xrightarrow{Na_3CO_3} B \xrightarrow{Elemental S} C \xrightarrow{I_2} D$$

Also mention the oxidation state of S in all the compounds.

 Write the IUPAC nomenclature of the given complex along with its hybridisation and structure.

- A mixture consists A (yellow solid) and B (colourless solid) which gives lilac colour in flame.
 - a) Mixture gives black precipitate C on passing H₂S_ω.
 - b) C is soluble in aqua-regia and on evaporation of aqua-regia and adding SnCl₂ gives greyish black precipitate D.

The salt solution with NH₄OH gives a brown precipitate.

- i) The sodium extract of the salt with CCI_/FeCI, gives a violet layer.
- The sodium extract gives yellow precipitate with AgNO₃ solution which is insoluble in NH₃

Identify A and B, and the precipitates C and D.

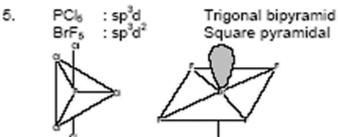
a) Match the following if the molecular weights of X, Y and Z are same.

Boiling Point	Kb
X 100	0.68
Y 27	0.53
Z 253	0.98

b) C_v value of He is always 3R/2 but C_v value of H₂ is 3R/2 at low temperature and 5R/2 at moderate temperature and more than 5R/2 at higher temperature explain in two to three lines.

Write resonance structure of the given compound.

 b) Compound A of molecular formula C₄H₂O₂CI exists in ketoform and predominantly in enolic form 'B'. On oxidation with KMnO₄, 'A' gives methors and a solution and a solution with KMnO₄, 'A' gives methors and a solution with KMnO₄, 'A' gives method and the solution with the solution


Chemistry Solutions

So, molarity of water = 55.55M

2.
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$
, $C_{sw} = \sqrt{\frac{8RT}{\pi M}}$

$$\frac{C_{rms}}{C_{sv}} = \sqrt{\frac{3RT}{M}} \times \sqrt{\frac{\pi M}{8RT}} = \sqrt{\frac{3\pi}{8}} = 1.085$$

- Ziggler Natta catalyst (R₃AI + TiCl₄)
- Oxygen atom of diethyl ether by donation of its lone pair to vacant 3p orbitals of Al in anhydrous AlCl₃ solvates it more compared to hydrous AlCl₃.

6. H₃C H H₃C OH
$$H_3$$
C H_3 C H_4 C H_5 C H

The bonds attached to the chiral carbon in both the molecules are not broken during the esterification reaction. (+) Acid reacts with (+) alcohol to give an (++) ester while (-) acid reacts with (+) alcohol to give (+ -) ester. These two esters are diastereoisomers.

$$\frac{1}{3} = R_H Z^2 \left(\frac{1}{r^2} - \frac{1}{r^2} \right)$$

$$\frac{\lambda_{He}}{\lambda_H} = \frac{Z_H^2}{Z_{He}^2} = \frac{1}{4}$$

So,
$$\lambda_{He} = \frac{1}{4} \times 91.2 = 22.8 \text{ nm}$$

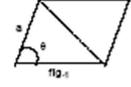
8.

- a) Benzoic acid
- 6.3 × 10⁻⁵
- b) p-NO₂- C₆H₄- COOH 30.6 × 10⁻⁶
- p-CI C₈H₄ COOH
- 4.3×10^{-6}
- d) p-CH₃-C₆H₄ COOH
- e) p-OCH₃- C₆H₄ COOH 3.3 × 10⁻⁶

2PbS + 3O2 --- 2PbO + 2SO2 9.

PbS + 2O₂ → PbSO₄

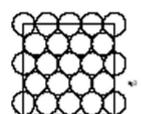
PbS + 2PbO --- 3Pb + SO₂


PbS + PbSO₄ --- 2Pb + 2SO₂

Oxidation number of Pb in litharge (PbO) is +2.

10.

11.


2½×a×a×sine a) Area of quadrilateral = Where a = length of the side of the quadrilateral To have the maximum area, i.e. $sin\theta = 1$ or $\theta = 90^{\circ}$. In other words, the quadrilateral must be a

Area of square = $4 \times 4 = 16 \text{ cm}^2$

Again to have the maximum no. of spheres the packing must be hop

Maximum no. of sphere s= 18 (see fig. 2) Area = 16 sq. cm

- \therefore No. of spheres per cm² = $\overline{16}$ = 1.125
- b) No. of m mole of CH₃COOH initially taken = 100 × 0.5 = 50 Since concentration reduces to 0.49 M
 - .: Final no. of m mole of CHcCOOH = 100 × 0.49 = 49
 - .. No. of m mole of CH₈COOH get adsorbed
 - = 50 49 = 1
 - ∴ No. of molecules of CH₂COOH get adsorbed = 6.02 × 10²⁰ Since 1g charcoal has area = 3.01 × 102 m2
 - ∴ 6.02 × 10²⁰ molecules of acetic acid gets adsorbed in 3.01 × 10² m² area
 - ∴ 1 molecule of acetic acid gets adsorbed = $\frac{3.01 \times 10^2}{6.02 \times 10^{20}} = \frac{1}{2} \times 10^{-18} = 5 \times 10^{-19} \text{ m}^2$
- a) At 25°C: K_w = 10⁻¹⁴ pK_w = 14 :: pH + pOH = 14 12. Pure water being neutral, pH = pOH = 7

$$Zn \mid Zn^{2^{*}}(C_{1}) \mid \mid Cu^{2^{*}}(C=?) \mid Cu$$
, $E_{cell} = E_{1}$
 $Zn \mid Zn^{2^{*}}(C_{2}) \mid \mid Cu^{2^{*}}(C=0.5 \text{ M}) \mid Cu$ $E_{cell} = E_{2} \text{ where } E_{2} > E_{1}$
From question
 $E_{2} - E_{1} = 0.03 \text{ and } C_{2} = C_{1}$

The cell reaction is
$$Zn + Cu^{2*} \longrightarrow Zn^{2*} + Cu$$
, $Q = \frac{[Zn^{2+}]}{[Cu^{2+}]}$

So,
$$E_{\text{cell}} = \frac{E_{\text{cell}}^0 - \frac{0.06}{2} log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

Thus,
$$E_1 = \frac{E_{coll}^0 - \frac{0.06}{2} \log \frac{C_1}{C}}{1}$$

$$E_2 = \frac{E_{cell}^0 - \frac{0.06}{2} log \frac{C_2}{0.5}}{E_2}$$

So,
$$E_2 - E_1 = \frac{0.06}{2} \left[log \frac{C_2}{C} \times \frac{0.5}{C_1} \right]$$
 \Rightarrow $0.03 = \frac{0.06}{2} log \frac{0.5}{C} =$

Alternatively

14.

16.
$$Na_2CO_3 + 2SO_2 + H_2O \longrightarrow (A) + CO_2$$

$$2Na_2SO_3$$

$$2NaHSO_3 + Na_2CO_3 \longrightarrow (B) + H_2O + CO_2$$

$$2Na_2S_2O_3$$

$$Na_2SO_3 + S \longrightarrow (C)$$

$$2Na_2S_4O_6$$

$$2Na_2S_2O_3 + I_2 \longrightarrow (D) + 2NaI$$
Oxidation states of 'S' are in (A) and (B) (+4) in (C) (+6, -2) in (D) (+5, 0)

19.

17. Potassiumamminetetracyano(C)nitrosoniumchromium(I) Cr is in + 1 state and d2sp3 hybridisation $u = \sqrt{n(n+2)} - \sqrt{3} = 1.73 \text{ B.M.}$

18.
$$[A = KI, B = HgI_2]$$

$$HgI_2 + H_2S \longrightarrow HgS + 2HI$$

$$HgI_2 \xrightarrow{aqua-regia} HgCI_2$$

$$Hg \downarrow$$

$$HgCI_2 + SnCI_2 \longrightarrow (greyishblack) + SnCI_4$$

$$K_2[HgI_4] \qquad [HgOHgNH_2]I$$

$$2KI + HgI_2 \longrightarrow orange \qquad : 2K_2HgI_4 + NH_3 + 3KOH \longrightarrow lodideofMillon's base + 7KI + 2H_2O$$

$$Na_2CO_3 + HgI_2 \longrightarrow HgJ + NaI + CO_2 + O_2 \uparrow$$

$$I_2 + Na^+$$

$$NaI + Fe^{3a} \longrightarrow (CCI_1 layerviolet) + Fe^{2a}$$

$$AgI_2 \longrightarrow AgI_3$$

$$AgNO_3 + \Gamma \longrightarrow (insoluble in NH_5)$$

$$AgNO_3 + \Gamma \longrightarrow (insoluble in NH_5)$$

$$I_3 \longrightarrow K_5 = \frac{RT_6^2}{1000 \, I_v} = \frac{RT_6^2M}{10000 \, \Delta H_v} = \frac{RT_8M}{10000 \, \Delta S} \qquad \left[\because I_v = \frac{\Delta H_v}{M} \right]$$

A change from liquid to vapour at boiling point is accompanied by increase in disorderness and hence increase in entropy. However, since a vapour is highly disordered state the difference of the extent of disorderness between vanour

R/2 = 3R/2. Hydrogen molecule is diatomic. However, at low temperature rotational and vibrational contribution are also zero so C_v is 3R/2. At moderate temperature rotational contribution (C = $2 \times R/2$) also becomes dominant and at even higher temperature vibrational contribution (1 \times R) also becomes significant.