MATHEMATICS

Time: 2 hours Marks: 60

- 1. If z_1 and z_2 are two complex numbers such that $|z_1| < 1 < |z_2|$ then prove that $\frac{|1-z_1z_2|}{|z_1-z_2|} < 1$ [2]
- Find a point on the curve x² + 2y² = 8 whose distance from the line x + y = 7, is minimum.
- 3. If matrix A = $\begin{bmatrix} c & a & b \end{bmatrix}$ where a, b, c are real positive numbers, abc = 1 and A^TA = I, then find the value of $a^3 + b^3 + c^3$. [2]
- 4. Prove that $2^{k} \binom{n}{0} \binom{n}{k} 2^{k-1} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n}{2} \binom{n-2}{k-2} \dots (-1)^{k} \binom{n}{k} \binom{n-k}{0} \binom{n}{k}$. [2]
- $\int_{0}^{\pi/2} f(\cos 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\pi/4} f(\sin 2x) \cos x \, dx$ 5. If f is an even function then prove that
- 6. For a student to qualify, he must pass at least two out of three exams. The probability that he will pass the 1st exam is p. If he fails in one of the exams then the probability of his passing in the next exam is probability that he will qualify.
 p otherwise it remains the same. Find the probability that he will qualify.
 [2]
- For the circle x² + y² = r², find the value of r for which the area enclosed by the tangents drawn from the point P(6, 8) to the circle and the chord of contact is maximum.
- 8. Prove that there exists no complex number z such that $|z| < \frac{1}{3} \sum_{i=1}^{n} a_i z^i = 1$ where $|a_i| < 2$.
- A is targeting to B, B and C are targeting to A. Probability of hitting the target by A, B and C are ²/₃, ¹/₂ and ¹/₃ respectively. If A is hit then find the probability that B hits the target and C does not.
- If a function f: [-2a, 2a] → R is an odd function such that f(x) = f(2a x) for x e[a, 2a] and the left hand derivative at x = a is 0 then find the left hand derivative at x = -a.
- Using the relation 2(1 cos x) < x², x → 0 or otherwise, prove that sin (tan x) ≥ x, ∀ x

e [0, 4]

42. If a big and in A.D. of high area in U.D. Was arrows that although the array of

MATHEMATICS

Time: 2 hours Marks: 60

- 1. If z_1 and z_2 are two complex numbers such that $|z_1| < 1 < |z_2|$ then prove that $\frac{|1-z_1z_2|}{|z_1-z_2|} < 1$ [2]
- Find a point on the curve x² + 2y² = 8 whose distance from the line x + y = 7, is minimum.
- 3. If matrix A = $\begin{bmatrix} c & a & b \end{bmatrix}$ where a, b, c are real positive numbers, abc = 1 and A^TA = I, then find the value of $a^3 + b^3 + c^3$. [2]
- 4. Prove that $2^{k} \binom{n}{0} \binom{n}{k} 2^{k-1} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n}{2} \binom{n-2}{k-2} \dots (-1)^{k} \binom{n}{k} \binom{n-k}{0} \binom{n}{k}$. [2]
- $\int_{0}^{\pi/2} f(\cos 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\pi/4} f(\sin 2x) \cos x \, dx$ 5. If f is an even function then prove that
- 6. For a student to qualify, he must pass at least two out of three exams. The probability that he will pass the 1st exam is p. If he fails in one of the exams then the probability of his passing in the next exam is probability that he will qualify.
 p otherwise it remains the same. Find the probability that he will qualify.
 [2]
- For the circle x² + y² = r², find the value of r for which the area enclosed by the tangents drawn from the point P(6, 8) to the circle and the chord of contact is maximum.
- 8. Prove that there exists no complex number z such that $|z| < \frac{1}{3} \sum_{i=1}^{n} a_i z^i = 1$ where $|a_i| < 2$.
- A is targeting to B, B and C are targeting to A. Probability of hitting the target by A, B and C are ²/₃, ¹/₂ and ¹/₃ respectively. If A is hit then find the probability that B hits the target and C does not.
- If a function f: [-2a, 2a] → R is an odd function such that f(x) = f(2a x) for x e[a, 2a] and the left hand derivative at x = a is 0 then find the left hand derivative at x = -a.
- Using the relation 2(1 cos x) < x², x → 0 or otherwise, prove that sin (tan x) ≥ x, ∀ x

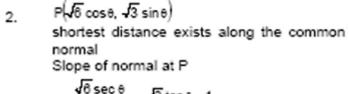
e [0, 4]

42. If a big and in A.D. of high area in U.D. Was arrows that although the array of

SOLUTIONS

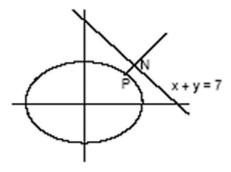
1. To prove
$$|1-z_1\overline{z}_2| < |z_1-z_2|$$

 $\Leftrightarrow (1-z_1\overline{z}_2)(1-\overline{z}_1z_2) < (z_1-z_2)(\overline{z}_1-\overline{z}_2)$
 $\Leftrightarrow 1-z_1\overline{z}_2-\overline{z}_1z_2+|z_1|^2|z_2|^2 < |z_1|^2-z_2\overline{z}_1-z_1\overline{z}_2+|z_2|^2$
 $\Leftrightarrow (1-|z_1|^2)-|z_2|^2(1-|z_1|^2) < 0$
 $\Leftrightarrow (1-|z_1|^2)(1-|z_1|^2) < 0$
Which is obvious as $|z_1| < 1 < |z_2|$.



$$= \frac{\sqrt{6} \sec \theta}{\sqrt{3} \cos \sec \theta} = \sqrt{2} \tan \theta = 1$$

$$= \cos \cos \theta = \sqrt{\frac{2}{3}} \text{ and } \sin \theta = \frac{1}{\sqrt{3}}$$
Hence $P \equiv (2, 1)$.



3.
$$A^{T}A = I$$

$$\begin{bmatrix}
a & b & c \\
b & c & a \\
c & a & b
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
b & c & a \\
c & a & b
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{cases} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & a^2 + b^2 + c^2 & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & a^2 + b^2 + c^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow a^2 + b^2 + c^2 = 1 \qquad(1)$$
and $ab + bc + ca = 0(2)$
Now $a^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) + 3abc$

$$= (a + b + c) + 3 \qquad(3)$$
Now $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$

$$= 1 + 2 \cdot 0 = 1$$

$$\Rightarrow a + b + c = 1 \qquad (since a, b, c are real positive number)$$
Now from (3)
$$a^3 + b^3 + c^3 = 1 + 3 = 4.$$

$$A^TA = I \Rightarrow |A^TA| = |I| \Rightarrow |A|^2 = 1$$

 $\Rightarrow (a^3 + b^3 + c^3 - 3abc)^2 = 1$
 $\Rightarrow a^3 + b^3 + c^3 - 3abc = 1$ (since a, b, c are positive real number $\Rightarrow a^3 + b^3 + c^3 \ge 3abc$ from $AM \ge GM$)
 $\Rightarrow a^3 + b^3 + c^3 = 4$

4.
$$\sum_{r=0}^{k} (-1)^{r} 2^{k-r} {}^{n-r} C_{k-r} = \sum_{r=0}^{k} (-1)^{r} 2^{k-r} \frac{n!}{(n-r)! r!} \frac{(n-r)!}{(n-k)! (k-r)!}$$

$$= \sum_{r=0}^{k} (-1)^{r} 2^{k-r} \frac{n!}{(n-k)! k!} \frac{k!}{r! (k-r)!}$$

$${}^{n}C_{k}2^{k}\sum_{r=0}^{k}\left(-\frac{1}{2}\right)^{r}{}^{k}C_{r}$$

5.
$$\int_{0}^{\pi/2} f(\cos 2x)\cos x dx = \int_{0}^{\pi/4} \left[f(\cos 2x)\cos x + f\left(\cos 2\left(\frac{\pi}{2} - x\right)\right)\cos\left(\frac{\pi}{2} - x\right) \right] dx$$

$$= \int_{0}^{\pi/4} \left[f(\cos 2x)\cos x + f(-\cos 2x)\sin x \right] dx$$

$$= \int_{0}^{\pi/4} f(\cos 2x) [\cos x + \sin x] dx = \sqrt{2} \int_{0}^{\pi/4} f(\cos 2x)\cos\left(\frac{\pi}{4} - x\right) dx$$

$$= \sqrt{2} \int_{0}^{\pi/4} f\left(\cos 2\left(\frac{\pi}{4} - x\right)\right)\cos\left(\frac{\pi}{4} - \left(\frac{\pi}{4} - x\right)\right) dx$$

$$= \sqrt{2} \int_{0}^{\pi/4} f(\sin 2x)\cos x dx$$

$$= \sqrt{2} \int_{0}^{\pi/4} f(\sin 2x)\cos x dx$$

Let E_i: denotes the event that the student will pass the ith exam, i = 1, 2, 3
 E: denotes the event that the student will qualify.

$$P(E) = P(E_1) \times P\left(\frac{E_2}{E_1}\right) + P(E_1) \times P\left(\frac{E_2'}{E_1}\right) \times P\left(\frac{E_3}{E_2'}\right) + P(E_1) \times P\left(\frac{E_2}{E_1'}\right) \times P\left(\frac{E_3}{E_2'}\right) + P(E_1) \times P\left(\frac{E_2}{E_1'}\right) \times P\left(\frac{E_3}{E_2'}\right)$$

$$= p^2 + p \times (1 - p)\frac{p}{2} + (1 - p) \times \frac{p}{2} \times p$$

$$\Rightarrow P(E) = \frac{2p^2 + p^2 \cdot p^3 + p^2 \cdot p^3}{2} = 2p^2 - p^3$$

7. Since OP = 10,
$$\sin \theta = \frac{r}{10}$$
 where $\theta \in \left(0, \frac{\pi}{2}\right)$

$$A = \frac{1}{2} \times 2r \cos\theta (10 - r \sin\theta)$$

= 10 sinθ cosθ (10 - 10 sin²θ)
⇒ $A = 100 \cos^2\theta \sin\theta \cos\theta$

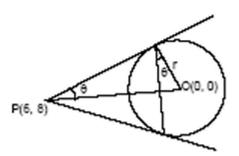
$$\frac{dA}{d\theta} = 100 \left[\cos^4\theta - 3\sin^2\theta\cos^2\theta\right]$$

$$= 300 \cos^4 \theta \left(\frac{1}{\sqrt{3}} - \tan \theta \right) \left(\frac{1}{\sqrt{3}} + \tan \theta \right)$$

$$\Rightarrow$$
 A is maximum at θ = $\frac{\pi}{6}$ \Rightarrow r = 10× $\frac{1}{2}$ = 5 units.

8
$$a_1z + a_2z^2 + + a_nz^n = 1$$

 $\Rightarrow |a_1z + a_2z^2 + + a_nz^n| = 1$
 $\Rightarrow |a_1z| + |a_2z^2| + + |a_nz^n| \ge 1$
 $\Rightarrow 2(|z| + |z|^2 + + |z|^n) > 1$
 $\Rightarrow \frac{2|z|}{(1-|z|)} > 1$
 $\Rightarrow \frac{1}{(1-|z|)} > 1$
as $|z| < \frac{1}{3}$, $|z| > \frac{1}{3} + \frac{2}{3}|z|^{n+1} \Rightarrow |z| > \frac{1}{3}$
This is a contradiction.



Then P(E) =
$$1-P(\overline{B} \cap \overline{C})=1-P(\overline{B}).P(\overline{C})=1-\frac{1}{2}.\frac{2}{3}=\frac{2}{3}$$

$$P\left(\frac{\mathsf{B} \cap \overline{\mathsf{C}}}{\mathsf{E}}\right) = \frac{P(\mathsf{B}).P(\overline{\mathsf{C}})}{P(\mathsf{E})} = \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{2}{3}} = \frac{1}{2}$$

$$\begin{split} f'_{-}(a) &= \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = 0 \ \, (given) \\ f'_{-}(-a) &= \lim_{h \to 0^{-}} \frac{f(-a+h) - f(-a)}{h} = \lim_{h \to 0^{-}} \frac{-f(-h+a) + f(a)}{h} \\ &= \lim_{h \to 0^{-}} \frac{-f(2a+h-a) + f(a)}{h} = -f'_{-}(a) = 0. \end{split} \tag{As f is odd}$$

 $f(x) = \cos(\tan x) \sec^2 x - 1 = \tan^2 x \cos(\tan x) + \cos(\tan x) - 1 > \tan^2 x \cos(\tan x)$

$$\Rightarrow f'(x) > \tan^2 x(\cos(\tan x) - \cos^{\frac{\pi}{3}}) > 0 \qquad (\text{since } 0 \le \tan x \le 1 < \frac{\pi}{3})$$

$$\Rightarrow$$
 f(x) is an increasing function \forall x e $\left[0, \frac{\pi}{4}\right]$

As
$$f(0) = 0 \implies f(x) \ge 0 \ \forall \ x \in \left[0, \frac{\pi}{4}\right]$$

 $\implies \sin(\tan x) \ge x$

$$\Rightarrow$$
 sin(tan x) \ge x.

$$b^2 = \frac{2a^2c^2}{a^2+c^2} - \left(\frac{a+c}{2}\right)^2$$

$$\Rightarrow$$
 (a² + c²)² + 2ac(a² + c²) = 8a²c²

$$\Rightarrow (a^2 + c^2 + ac)^2 = 9a^2c^2$$

$$\Rightarrow (a^{2} + c^{2})^{2} + 2ac(a^{2} + c^{2}) = 8a^{2}c^{2}$$

$$\Rightarrow (a^{2} + c^{2} + ac)^{2} = 9a^{2}c^{2}$$

$$\Rightarrow a^{2} + c^{2} + ac = \pm 3ac \qquad ...(2)$$

$$\Rightarrow a^2 + c^2 - 2ac = 0 \Rightarrow a = c \Rightarrow b = c$$

or,
$$a^2 + c^2 = -4ac$$

$$\Rightarrow$$
 $(a + c)^2 = -2ac$

$$\Rightarrow 4b^2 = -2ac \Rightarrow b^2 = -\frac{ac}{2}$$

$$\Rightarrow$$
 a, b, $-\frac{c}{2}$ are in G.P.

13. For unequal real roots

$$\Rightarrow$$
 $(a - b)^2 - 4 (1 - a - b) > 0$

$$\Rightarrow$$
 b² + b (4 - 2a) + a² + 4a - 4 > 0

For the above quadratic expression to be true ∀ b ∈ R

Discriminant of its corresponding equation should be less than zero i.e. $(4 - 2a)^2 - 4(a^2 + 4a - 4) < 0$

$$\Rightarrow m_1 m_2 m_3 = -k \Rightarrow m_3 = -\frac{k}{\alpha}$$

$$\Rightarrow \left(-\frac{k}{\alpha}\right)^3 - \frac{k}{\alpha}(2-h) + k = 0$$

$$\Rightarrow k^2 = \alpha^2 h - 2\alpha^2 + \alpha^3$$

$$\Rightarrow y^2 = \alpha^2 x - 2\alpha^2 + \alpha^3$$

Comparing it with $y^2 = 4x$, we get $\alpha^2 = 4$ and $-2\alpha^2 + \alpha^3 = 0 \Rightarrow \alpha = 2$.

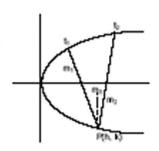
Alternate:

Since locus of P is a part of the parabola ⇒ normals at any two points t₁ and t₂ meet at P

$$\Rightarrow t_1t_2 = 2$$

$$\Rightarrow$$
 (- m₁) (- m₂) = 2

$$\Rightarrow \alpha = 2$$



15(i). From Lagrange's mean value theorem

$$\frac{f(4)-f(0)}{4-0} = f(a)$$
 for a $\in (0, 4)$...(1)

Also from Intermediate mean value theorem

$$\frac{f(4) + f(0)}{2} = f(b) \text{ for } b \in (0, 4) \qquad \dots (2)$$

From (1) and (2), we get

$$\frac{(f(4))^2 - (f(0))^2}{8} - f'(a)f(b).$$

(ii). Replacing t by
$$z^2$$
, we get $\delta = \int_0^4 f(t)dt = \int_0^2 2z f(z^2) dz$

From Lagrange's mean value theorem

$$\frac{\int_{0}^{2} 2zf(z^{2})dz - \int_{0}^{0} 2zf(z^{2})dz}{2 - 0} = 2\gamma f(y^{2})$$
 for $y \in (0, 2)$

$$\Rightarrow \int_{0}^{2} 2zf(z^{2})dz = 2(2yf(y^{2})) = 2\left(\frac{2\alpha f(\alpha^{2}) + 2\beta f(\beta^{2})}{2}\right)$$

(where 0< α < γ <β < 2, using

intermediate mean value theorem)

$$\Rightarrow \int_{0}^{4} f(t) dt = 2 \left[\alpha f(\alpha^{2}) + \beta f(\beta^{2}) \right]$$

$$\Rightarrow 0 < \alpha, \beta < 2.$$

16(i). The equation of the plane is
$$\begin{vmatrix} x-2 & y-1 & z-0 \\ 5-2 & 0-1 & 1-0 \\ 4-2 & 1-1 & 1-0 \end{vmatrix} = 0 \Rightarrow (x-2)(-1)-(y-1)(1)+z(2) = 0 \Rightarrow x+y-2z=3.$$

(ii). Let Q be (α, β, γ).

Equation of line PQ is
$$\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-6}{-2}$$

$$\frac{\alpha+2}{2}$$
 -2 $\frac{\beta+1}{2}$ -1 $\frac{\gamma+6}{2}$ -6

$$\begin{array}{l} \frac{1}{2} \frac{\left(\frac{\alpha+2}{2}-2\right)+1\left(\frac{\beta+1}{2}-1\right)-2\left(\frac{\gamma+6}{2}-6\right)}{1.1+1.1+(-2)(-2)} = 2 \\ \Rightarrow \alpha = 6, \ \beta = 5, \ \gamma = -2 \Rightarrow Q \equiv (6, \ 5, \ -2). \end{array}$$
 (Since $1\left(\frac{\alpha+2}{2}\right)+1\left(\frac{\beta+1}{2}\right)-2\left(\frac{\gamma+6}{2}\right)=3$)

17.
$$\frac{dP(x)}{dx} > P(x) \Rightarrow \frac{dP(x)}{dx} - P(x) > 0$$

$$\Rightarrow \frac{d}{dx} (P(x)e^{-x}) > 0$$

$$\Rightarrow P(x) \cdot e^{-x} \text{ is an increasing function.}$$

$$\Rightarrow P(x) e^{-x} > P(1) e^{-1} \forall x \ge 1$$

$$\Rightarrow P(x) e^{-x} > 0 \forall x > 1 \qquad \text{(since } P(1) = 0\text{)}$$

$$\Rightarrow P(x) > 0 \forall x > 1.$$

18.
$$I_{n} = \frac{n}{2} r^{2} \sin \frac{2\pi}{n} \implies \frac{2I_{n}}{n} = \sin \frac{2\pi}{n} \qquad(1)$$

$$O_{n} = nr^{2} \tan \frac{\pi}{n} \qquad(2)$$
From (1) and (2), we get
$$\frac{I_{n}}{O_{n}} = \frac{1}{2} \frac{\sin \frac{2\pi}{n}}{\tan \frac{\pi}{n}} = \cos^{2} \frac{\pi}{n} = \frac{\cos \frac{2\pi}{n} + 1}{2} = \frac{1 + \sqrt{1 - \left(\frac{2I_{n}}{n}\right)^{2}}}{2} \quad (\text{ using (1)})$$

19.
$$\begin{split} \ddot{x} &= \frac{\ddot{u} + \ddot{v}}{\left| \ddot{u} + \ddot{v} \right|} = \frac{1}{2} \sec \frac{\alpha}{2} \left(\ddot{u} + \ddot{v} \right) \\ &\quad \text{. Similarly for vectors } \ddot{y} \text{ and } \ddot{z} \\ &\quad \text{As } \left[\left(\ddot{x} \times \ddot{y} \right) - \left(\ddot{y} \times \ddot{z} \right) - \left(\ddot{z} \times \ddot{x} \right) \right] = \left[\ddot{x} \ \ddot{y} \ \ddot{z} \right]^2 \\ &\quad = \frac{1}{64} \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2} \left[\ddot{u} + \ddot{v} + \ddot{w} + \ddot{w} + \ddot{u} \right]^2 \\ &\quad = \frac{4}{64} \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2} \left[\ddot{u} \ \ddot{v} \ \ddot{w} \right]^2 \\ &\quad = \frac{1}{16} \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2} \left[\ddot{u} \ \ddot{v} \ \ddot{w} \right]^2 \end{split}$$

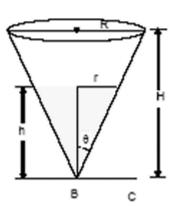
$$As \left[\ddot{u} + \ddot{v} + \ddot{w} + \ddot{w} + \ddot{u} \right] = 2 \left[\ddot{u} \ \ddot{v} \ \ddot{w} \right]$$

20. Let the semi vertical angle of the cone be θ = tan⁻¹
(R/H)
Let height of the liquid at time 't' be 'h' from the base BC and radius r.
Volume of liquid at time 't' = V = ¹/₃ π²h = ¹/₃ π³ cot

 \Rightarrow = \overline{dt} = $kS = k\pi^2$

Volume of liquid at time 't' =
$$V = \sqrt{3} \pi^2 h = \sqrt{3} \pi^3 \cot \theta$$

S = Surface area in contact with air at time 't' = π^2
Given that $= \frac{dV}{dt} \propto S$



$$\Rightarrow \frac{\cot \theta}{3} \pi 3r^{2} \frac{dr}{dt} = -k\pi^{2}$$

$$\Rightarrow \cot \theta R \qquad 0 \qquad \text{(where T is the required time)}$$

$$\Rightarrow R R = kT \Rightarrow T = \frac{H}{k}$$