Physics

- If n[®] division of main scale coincides with (n+1)[®] divisions of vernier scale. Given one
 main scale division is equal to 'a' units. Find the least count of the vernier.
- Find the focal length of the lens shown in the figure. The radii of curvature of both the surfaces are equal to R.

- Frequency of a photon emitted due to transition of electron of a certain element from L to K shell is found to be 4.2 × 10¹⁶ Hz. Using Moseley's law, find the atomic number of the element, given that the Rydberg's constant R = 1.1 × 10⁷ m⁻¹.
- An insulated container containing mono atomic gas of molar mass m is moving with a velocity vo. If the container is suddenly stopped, find the change in temperature.
- A particle of mass m, moving in a circular path of radius R with a constant speed v₂ is located at point (2R, 0) at time t = 0 and a man starts moving with a velocity v₁ along the +ve y-axis from origin at time t = 0. Calculate the linear momentum of the particle w.r.t. the man as a function of time.

- A tuning fork of frequency 480 Hz resonates with a tube closed at one end of length 16 cm and diameter 5 cm in fundamental mode. Calculate velocity of sound in air.
- How a battery is to be connected so that the shown rheostat will behave like a potential divider? Also indicate the points about which output can be taken.

 Charges +q and-q are located at the corners of a cube of side a as shown in the figure. Find the work done to separate the charges to infinite distance.

- A radioactive sample emits n β-particles in 2 sec. In next 2 sec it emits 0.75 n βparticle, what is the mean life of the sample?
- In a photoelectric experiment set up, photons of energy 5 eV falls on the cathode having work function 3 eV. (a) If the saturation current is i_A = 4μA for intensity 10⁻⁶ W/m², then plot a graph between anode potential and current. (b) Also draw a graph for intensity of incident radiation 2 × 10⁻⁶ W/m².

Physics

- If n[®] division of main scale coincides with (n+1)[®] divisions of vernier scale. Given one
 main scale division is equal to 'a' units. Find the least count of the vernier.
- Find the focal length of the lens shown in the figure. The radii of curvature of both the surfaces are equal to R.

- Frequency of a photon emitted due to transition of electron of a certain element from L to K shell is found to be 4.2 × 10¹⁶ Hz. Using Moseley's law, find the atomic number of the element, given that the Rydberg's constant R = 1.1 × 10⁷ m⁻¹.
- An insulated container containing mono atomic gas of molar mass m is moving with a velocity vo. If the container is suddenly stopped, find the change in temperature.
- A particle of mass m, moving in a circular path of radius R with a constant speed v₂ is located at point (2R, 0) at time t = 0 and a man starts moving with a velocity v₁ along the +ve y-axis from origin at time t = 0. Calculate the linear momentum of the particle w.r.t. the man as a function of time.

- A tuning fork of frequency 480 Hz resonates with a tube closed at one end of length 16 cm and diameter 5 cm in fundamental mode. Calculate velocity of sound in air.
- How a battery is to be connected so that the shown rheostat will behave like a potential divider? Also indicate the points about which output can be taken.

 Charges +q and-q are located at the corners of a cube of side a as shown in the figure. Find the work done to separate the charges to infinite distance.

- A radioactive sample emits n β-particles in 2 sec. In next 2 sec it emits 0.75 n βparticle, what is the mean life of the sample?
- In a photoelectric experiment set up, photons of energy 5 eV falls on the cathode having work function 3 eV. (a) If the saturation current is i_A = 4μA for intensity 10⁻⁶ W/m², then plot a graph between anode potential and current. (b) Also draw a graph for intensity of incident radiation 2 × 10⁻⁶ W/m².

17. A wheel of radius R having charge Q, uniformly distributed on the rim of the wheel is free to rotate about a light horizontal rod. The rod is suspended by light inextensible strings and a magnetic field B is applied as shown in the figure. The initial tensions in the strings are Tα If the breaking tension of the strings

are $\frac{3 \cdot 6}{2}$, find the maximum angular velocity ω_0 with which the wheel can be rotated.

 A string tied between x = 0 and x = ℓ vibrates in fundamental mode. The amplitude A, tension T and mass per unit length μ is given. Find the total energy of the string.

19. A bubble having surface tension T and radius R is formed on a ring of radius b (b << R). Air is blown inside the tube with velocity v as shown. The air molecule collides perpendicularly with the wall of the bubble and stops. Calculate the radius at which the bubble separates from the ring.

20. Shown in the figure is a container whose top and bottom diameters are D and d respectively. At the bottom of the container, there is a capillary tube of outer radius b and inner radius a. The volume flow rate in the capillary is Q. If the capillary is removed the liquid comes out with a velocity of v. The density of the liquid is given as ρ. Calculate the coefficient of viscosity η.

SOLUTIONS

(n + 1) division of vernier scale = n division of main scale

∴ one Vernier division = n+1 main scale division

Least count = 1 M.S.D. - 1 V.D. = $\frac{1}{n+1}$ M.S. D. = $\frac{a}{n+1}$

 For an object placed at infinity the image after first refraction will be formed at v₁

$$\frac{\mu_2}{v_1} - \frac{\mu_1}{-\infty} = \frac{\mu_2 - \mu_1}{+R}$$
 ... (i)

The image after second refraction will be found at

V₂

$$\frac{\mu_3}{v_2} - \frac{\mu_2}{v_1} = \frac{\mu_3 - \mu_2}{+R}$$
 ... (ii)

adding (i) and (ii)

$$\frac{\mu_3}{v_2} = \frac{\mu_3 - \mu_1}{R} \Longrightarrow v_2 = \frac{\mu_3 R}{\mu_3 - \mu_1}$$

Therefore focal length will be $\mu_3 - \mu_1$

3.
$$(Z-1)^2 Rhc \left[\frac{1}{1} - \frac{1}{4}\right] = hv$$

 $(Z-1)^2 = \frac{v^4}{3RC} \implies Z = 42$

Loss in K.E. of the gas ΔE = ¹/₂ (nm) ²/₀, where n = number of moles.
 If its temperature change by ΔT.

Then
$$n\frac{3}{2}R\Delta T = \frac{1}{2}(nm)v_0^2$$

$$\Rightarrow \Delta T = \frac{mv_0^2}{3R}.$$

5.

$$\omega = \frac{\mathbf{v}_2}{\mathbf{R}}$$

$$\overline{\mathbf{v}}_2 = (-\mathbf{v}_2 \operatorname{sinot} \hat{\mathbf{i}} + \mathbf{v}_2 \cos \omega \hat{\mathbf{j}})$$

$$\overline{\mathbf{v}}_1 = \mathbf{v}_1^{\hat{\mathbf{j}}}$$

$$\overline{\mathbf{v}}_{21} = \overline{\mathbf{v}}_2 - \overline{\mathbf{v}}_1 = -\mathbf{v}_2 \operatorname{sinot} \hat{\mathbf{i}} + (\mathbf{v}_2 \cos \omega \mathbf{t} - \mathbf{v}_1)\hat{\mathbf{j}}$$

6.
$$(\ell + 0.6r) = \frac{\lambda}{4} - \frac{v}{4f}$$

 $v = 4f (\ell + 0.6 r) = 336 \text{ m/s}.$

8.
$$W_{\text{external}} = \Delta PE = \frac{1}{4\pi\epsilon_0} \frac{q^2}{a} \left[-\frac{3}{1} + \frac{3}{\sqrt{2}} - \frac{1}{\sqrt{3}} \right]_{\times} \frac{8}{2}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q^2}{a} \cdot \frac{4}{\sqrt{6}} [3\sqrt{3} - 3\sqrt{6} - \sqrt{2}]$$

9.
Let N be the number of active nuclei at time t = 0.
Hence n =
$$N_0 (1 - e^{-2\lambda})$$

1.75 n = $N_0 (1 - e^{-4\lambda})$
1 $1 - e^{-2\lambda}$

$$\Rightarrow \frac{1}{1.75} = \frac{1 - e^{-2\lambda}}{1 - e^{-4\lambda}}$$

$$\Rightarrow e^{-4\lambda} - 1.75 e^{-2\lambda} + 0.75 = 0$$

$$\Rightarrow \frac{1}{\lambda} = \frac{2}{\ln(4/3)} \text{ sec.}$$

10.

11. (a) dt =
$$\sigma sAI(T_s)^4 - (T_s)^4$$

(a) $\frac{dQ}{dt} = \sigma sA[(T_s)^4 - (T_s)^4],$ Rate of heat loss per unit area = 595 watt / m².

(b) Let To be the temperature of the hot oil

$$\Rightarrow \frac{KA(T_o - T_t)}{t} = 595 A$$

$$\Rightarrow T_o \approx 420 K$$

$$x_{cm} = \frac{\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} - v_0 t}{\sum_{m_1 + m_2} \frac{m_1}{m_2} A (1 - \cos \omega t)}$$

$$\Rightarrow x_0 = v_0 t + \frac{m_2}{m_2} A (1 - \cos \omega t)$$

$$(b) a_1 = \frac{d^2 x_1}{dt^2} - A \omega^2 \cos \omega t$$

The separation $(x_2 - x_1)$ between the two blocks will be equal to & when the acceleration will be equal to zero.

$$x_2-x_1=\frac{m_1}{m_2}A(1-\cos\omega t)+A(1-\cos\omega t)$$
 for $a_1=0$

$$x_2 - x_1 = \ell_0 = \left(\frac{m_1}{m_2} + 1\right)_A$$

Alternate (b)

In center of mass reference frame, maximum separation of the blocks = $2\ell_0$ (using conservation of energy). If x_1 and x_2 be the separation of the blocks from center of mass at the moment of maximum separation

$$x_1 + x_2 = 2\ell_0$$
 and $m_1x_1 = m_2x_2$

$$\Rightarrow x_1 = \frac{2\ell_0}{\left(1 + \frac{m_1}{m_2}\right)} \text{ but } x_1 = 2A$$

$$\Rightarrow \ell_0 = A \left(1 + \frac{m_1}{m_2}\right)$$

$$\Rightarrow \frac{\sqrt{3}}{2} - \sqrt{3} \sin r$$

$$\Rightarrow r = 30^{\circ}$$

The refracted ray inside the prism hits the other face at 90°; hence deviation produced by this face is zero and hence angle of emergence is zero.

for minimum thickness

$$\Delta x = 2\mu t = \lambda$$
, where $t =$

thickness

$$\Rightarrow t = \frac{\lambda}{2\mu} = 125 \text{ nm}$$

$$\Rightarrow v_e = \sqrt{\frac{2GM}{R}}$$
 where M is the mass of the moon.

P.E. inside the crater of moon will be =
$$-\frac{GMm}{R} + \int_{R}^{solytoo} \frac{GMmx}{R^3} dx$$

$$-\frac{199 \text{ GMm}}{20000 \text{ R}} + \frac{1}{2} \text{mv}_e^2 = -\frac{\text{GMm}}{\text{R+h}} + 0$$

$$\Rightarrow h \approx 100 \text{ R}$$

15.

(a) Flux through the square loop

$$= \int_{a}^{2a} \frac{\mu_0}{4\pi} 2 \frac{1}{x} + \frac{1}{3a - x} a dx$$

 $\frac{\mu_0}{4\pi}$ la4ln2

μo

π al_kω In2 cosωt

Charge on the capacitor

Q = Ce =
$$-C \frac{\mu_0}{\pi}$$
 a $\log \ln 2$ cos ωt = $-Q_0 \cos \omega t$ (say)

Current in the loop = $\frac{dQ}{dt}$

=
$$\frac{\mu_0}{\pi}$$
 Ck ω^2 a In2 sin ω t

16. (a) K.E.
$$\Delta PE = \dot{P} \cdot \dot{E} = \frac{P}{4\pi c_0} \frac{Q^2}{d^2}$$

 $= \frac{QP}{2\pi\epsilon_0 d^3}$ along positive x-axis.

17.

. (1) For moment of forces about P

$$q \frac{\omega_{\text{max}}}{2\pi} \times \pi R^2 \times B + mg^{\frac{d}{2}} = \Pi_0$$

$$\left(\frac{3T_0}{2}\right)d$$

$$\Rightarrow \omega_{\text{tries}} = \frac{T_0 d}{qBR}$$

where
$$k = \pi/\ell$$
 and $\omega = \frac{\pi}{\ell} \sqrt{\frac{T}{\mu}}$

$$\frac{dy}{dt} = -A\omega \sin kx \sin \omega t \implies v_{\text{mix}}(x) = A\omega \sin kx$$

$$E = \int_{0}^{\ell} \frac{1}{2} \mu dx A^{2} \omega^{2} \sin^{2} kx = \frac{A^{2} \pi^{2} T}{4\ell}$$

19.

$$2\pi b \times 2T \sin \theta = \rho A v^2$$

$$\Rightarrow 4\pi b T \times \frac{b}{R} = \frac{4T}{\rho v^2}$$

$$\Rightarrow R = \frac{4T}{\rho v^2}$$

$$= \frac{4T}{T \sin \theta}$$

When the tube is not there.

P + hpg +
$$\frac{1}{2}$$
 p $v_1^2 = \frac{1}{2}$ p v_0^2

$$\frac{\pi D^2}{4} v_1 = \frac{\pi b^2}{4} v_0$$

By Poiseuille's equation the rate of flow of liquid in the capillary tube

$$Q = \frac{\pi \Delta P a^4}{8 \eta \ell}$$

where
$$\Delta P = P + \rho g h = \frac{1}{2} \rho v_o^2 \left[1 - \frac{b^2}{D^2} \right]$$

$$Q = \frac{1}{2} \rho v_o^2 \left[1 - \frac{b^2}{D^2} \right] \frac{\pi a^4}{8 \eta \ell}$$

$$\eta = \frac{\pi a^4 \rho v_o^2}{16 Q \ell} \left[1 - \frac{b^2}{D^2} \right]$$