Instructions

- (1) This question paper consists of two parts: Part A and Part B and carries a total of 100 Marks.
- (2) There is no negative marking.
- (3) Part A carries 20 multiple choice questions of 2 marks each. Answer all questions in Part A.
- (4) Answers to Part A are to be marked in the OMR sheet provided.
- (5) For each question, darken the appropriate bubble to indicate your answer.
- (6) Use only HB pencils for bubbling answers.
- (7) Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- (8) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- (9) Part B has 24 questions. Answer any 12 in this part. Each question carries 5 marks.
- (10) Answers to Part B are to be written in the separate answer book provided.
- (11) Candidates are asked to fill in the required fields on the sheet attached to the answer book.
- (12) Let Z, R, Q and C denote the set of integers, real numbers, rational numbers and complex numbers respectively.
- (13) If G is a group, then O(G) denotes the order of G.

MATHEMATICS

PART A

(1) The ordinary differential equation g' = 2g with g(0) = a has

- (A) the solution $g(x) = 2 \exp(ax)$,
- (B) the solution $g(x) = (\exp(ax) \exp(-ax))/2$,
- (C) the solution $g(x) = a \exp(2x)$,
- (D) no solution.

(2) Let x(t) and y(t) be C^{∞} functions on \mathbb{R} and let $z(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$. Let A be a 2×2 real constant matrix such that z'(t) = Az(t) for all $t \in \mathbb{R}$. Let λ be an eigenvalue of A with corresponding eigenvector v. Then a solution for z(t) is

- (A) $\exp(\lambda t)v$,
- (B) $\lambda \exp(\lambda t)v$,
- (C) $\exp(-\lambda t)v$,
- (D) $\exp(i\lambda t)v$.
- (3) Let f be a non-constant entire function such that |f(z)| = 1 for every z with |z| = 1. Then
 - (A) f has a zero in the open unit disc.
 - (B) f always has a zero outside the closed unit disc.
 - (C) f need not have any zero.
 - (D) any such f has exactly one zero in the open unit disc.
- (4) Let f have a pole of order 2 at 0 and let g be an analytic function in a neighbourhood of 0 having a zero of order 3 at 0. Then the function f(z)g(z) has
 - (A) a pole of order 2 at 0,
 - (B) a zero of order 2 at 0,
 - (C) a pole of order 1 at 0
 - (D) a zero of order 1 at 0.

- (5) Let f be an entire function whose values lie in a straight line in the complex plane. Then
 - (A) f is necessarily identically equal to 0,
 - (B) f is constant,
 - (C) f is a Möbius map,
 - (D) f is a linear function.
- (6) Given a non-constant complex valued function f(z) = f(x + iy) = u(x + iy) + iv(x + iy) with u and v being real valued twice continuously differentiable functions, define

$$\partial f = \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}) \text{ and } \bar{\partial}f = \frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}).$$

Then f is analytic if

- (A) $\partial f = 0$,
- (B) $\bar{\partial}f = 0$,
- (C) $\partial f = \bar{\partial} f$,
- (D) $\partial f = -\bar{\partial}f$.
- (7) Let $f: [-1,1] \to \mathbb{R}$ be a continuous function such that $\int_{-1}^{x} f(t)dt = 0$ for all $x \in [-1,1]$. Then
 - (A) f is identically 0,
 - (B) f is a non-zero odd function,
 - (C) f is a non-zero even function,
 - (D) f is a non-zero periodic function.
- (8) Let A be a closed infinite subset of \mathbb{R}^n . Then
 - (A) A is always the closure of its interior,
 - (B) A is always compact,
 - (C) A is always the closure of a countable set,
 - (D) A is always a bounded set.

(9) For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let $Z(f) = \{x \in \mathbb{R} : f(x) = 0\}$. Then

- (A) Z(f) is always a compact set,
- (B) Z(f) is always a closed set,
- (C) Z(f) is always a connected set,
- (D) Z(f) is always an open set.
- (10) Let $f : \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function with f(0) = f(1) = f'(0) = 0. Then
 - (A) f'' has no zeros in [0.1],
 - (B) f''(x) = 0 for some $x \in (0, 1)$,
 - (C) f''(0) is always 0,
 - (D) f''(0) is always 1.
- (11) If $A: \mathbb{R}^2 \to \mathbb{R}^2$ is an invertible linear map, then the image of the unit square is always
 - (A) a square,
 - (B) a rectangle,
 - (C) a disc,
 - (D) a parallelogram.
- (12) Let A be a 3×3 real matrix such that $A^2 = -I_3$ where I_3 is the 3×3 identity matrix. Such an A
 - (A) is diagonalizable,
 - (B) is orthogonal,
 - (C) does not exist
 - (D) is symmetric.
- (13) Let

$$A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \text{ where } 0 \neq a \in \mathbb{R}.$$

If B is another 2×2 real matrix which commutes with A, then the eigenvalues of B are always

- (A) equal,
- (B) distinct,
- (C) equal to 0,

(D) equal to 1.

- (14) If A is a real $n \times n$ matrix satisfying $A^3 = A$, then Trace of A is always
 - (A) n,
 - (B) 0,
 - (C) -n,
 - (D) an integer in the set $\{-n, -(n-1), \dots, -1, 0, 1, \dots, n\}$.
- (15) Let (A, B) be a pair of $n \times n$ matrices such that $AB BA = I_n$ where I_n is the $n \times n$ identity matrix.
 - (A) Then A and B are simultaneously diagonalizable,
 - (B) Such a pair (A, B) does not exist,
 - (C) Rank A = Rank B,
 - (D) det AB = 1/2.
- (16) Let G be an abelian group. If a and b are two elements of order 8 and 10 respectively, then the order of the element $a^{-1}b$ is
 - (A) 80,
 - (B) 18,
 - (C) 2,
 - (D) 40.

(17) Let \mathbb{C}^* be the group $\mathbb{C} \setminus \{0\}$. Then a finite subgroup of \mathbb{C}^*

- (A) is contained in \mathbb{R}^* ,
- (B) consists of only -1 and 1,
- (C) is contained in \mathbb{Q}^* ,
- (D) is contained in $\{z \in \mathbb{C} : |z| = 1\}$.

(18) If G is a group of order 20, then the number of subgroups of G of order 5 is

- (A) 1,
- (B) 4,
- (C) 5,
- (D) 2.

- (19) If the order of every non-trivial element in a group is n, then
 - (A) n is necessarily a prime number,
 - (B) n can be any odd number,
 - (C) n is an even number,
 - (D) n can be any positive integer.
- (20) Let G_1 and G_2 be two groups such that $O(G_1)$ and $O(G_2)$ are relatively prime. If $f: G_1 \to G_2$ is a homomorphism, then
 - (A) f is necessarily trivial,
 - (B) f is necessarily onto,
 - (C) f is necessarily injective,
 - (D) f is an isomorphism.

Part B

(1) Let (X, d_1) and (Y, d_2) be two metric spaces and let $f : X \to Y$ be an onto continuous function satisfying

$$d_1(x,y) \le d_2(f(x), f(y))$$
 for all $x, y \in X$.

Prove that if (X, d_1) is complete then (Y, d_2) is also complete.

- (2) Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Suppose that there is a $c < \infty$ such that $|f'(x)| \leq c$ for all $x \in (a, b)$. Prove that f extends continuously to [a, b].
- (3) Let $\{x_n\}$ be a sequence in a metric space. Prove that the sequence $\{x_n\}$ converges if and only if every proper subsequence of $\{x_n\}$ converges.
- (4) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuously differentiable function with f(0) = 0. Prove that there is a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = xg(x) for all x.
- (5) Let $f : \mathbb{R} \to \mathbb{R}$ be a one-to-one differentiable function. Prove that f is strictly increasing or strictly decreasing.
- (6) A function $g : \mathbb{R} \to \mathbb{R}$ is said to be a *step function* if there are real numbers a, b and c such that

$$g(x) = c \text{ if } b \le x \le a$$
$$= 0 \text{ if } x < b \text{ or } x > a$$

Suppose that $f:[0,1] \to \mathbb{R}$ is a continuous function such that

$$\int_0^1 f(x)g(x)dx = 0$$

for any step function g. Prove that f(x) = 0 for all $x \in [0, 1]$.

(7) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable function. Prove that f is (complex) analytic as a function from \mathbb{C} to \mathbb{C} if and only if the matrix of f'(x) as a linear map from \mathbb{R}^2 to \mathbb{R}^2 commutes with the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ for all $x \in \mathbb{R}^2$.

- (8) Calculate $\int_0^{2\pi} \exp(\exp(i\theta)) d\theta$.
- (9) Prove that the function $f(z) = \overline{\exp(1/\overline{z})}$ is analytic in $\mathbb{C} \setminus \{0\}$.
- (10) Is there an entire function g(z) such that g(z) = 1/z for $|z| \ge 1$?. Justify your answer.
- (11) Prove that

$$\int_{|z|=r} \frac{dz}{z^3+1}$$

is a constant for large r and find its value.

- (12) Let A be a 2×2 real matrix. Suppose that $A^2 = I$, where I is the identity matrix. Prove that A is diagonalizable.
- (13) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $\langle Tx, Ty \rangle = 0$ if $\langle x, y \rangle = 0$. Let $\{e_i\}_{i=1}^n$ be the standard basis for \mathbb{R}^n . (a) Show that $\langle T(e_i - e_j), T(e_i + e_j) \rangle = 0$ 1 Mark (b) Show that $\langle Te_i, Te_i \rangle$ is a constant independent of *i*. 2 Marks (c) Let $k = \langle Te_1, Te_1 \rangle$. Show that $\langle Tx, Ty \rangle = k \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$ 2 Marks
- (14) Suppose that T is a real $n \times n$ matrix such that $T^m x = 0$ and $T^{m-1} x \neq 0$ for some vector x. Prove that $x, Tx, ..., T^{m-1}x$ are linearly independent.
- (15) Suppose that A is a real $n \times n$ matrix such that Trace $(A^t B) = 0$ for any real $n \times n$ matrix B. Prove that A = 0.
- (16) Let A be an n×n real matrix such that A² = I. Prove that Rank (I + A) + Rank (I A) = n.
 (Hint: By a result of Frobenius, if A and B are two n×n matrices then Rank (AB) ≥ Rank A + Rank B n).

- (17) Let G be a finite group and H a subgroup such that G/H has only two elements. Prove that H is a normal subgroup of G.
- (18) Let R be a finite ring and a an element of R which is not a zero divisor. Prove that a is invertible.
- (19) Let G be a group and suppose that $g \in G$ is the *unique* element of order 2. Prove that g belongs to the center of G, i.e., g commutes with every element of G.
- (20) Let G be a finite abelian group of odd order. Define the map $f : G \to G$ by $f(g) = g^2$. Prove that f is an automorphism.
- (21) Let F be a finite set. Let \mathcal{A} consist of all functions from F to the complex plane. Prove that \mathcal{A} is a ring and find all the invertible elements.
- (22) Consider the functions f(x) = x³ and g(x) = x²|x| defined on the interval [-1, 1].
 (a) Show that their Wronskian W(f, g) vanishes identically.
 (b) Show that f and g are not linearly dependent.
 (c) Marks
- (23) Consider the equation x²y" + xy' y = 0.
 (a) Find a solution y₁ by inspection.
 (b) Find an independent solution y₂ of the form vy₁.
 (c) Find the general solution.
 1 Mark
- (24) Find all pairs of C^{∞} functions x(t) and y(t) on \mathbb{R} such that x'(t) = 2x(t) y(t)and y'(t) = x(t).

(Hint: Eliminate y first)