General Instructions :
i) The question-cum-answer booklet contains two Parts, Part - A \& Part - B.
ii) Part - A consists of 60 questions and Part - B consists of 16 questions.
iii) Space has been provided in the question-cum-answer booklet itself to answer the questions.
iv) Follow the instructions given in Part - A and write the correct choice in full in the space provided below each question.
v) For Part - B enough space for each question is provided. You have to answer the questions in the space provided.
vi) Space for Rough Work has been printed and provided at the bottom of each page.

PART - A

Four alternatives are suggested to each of the following questions / incomplete statements. Choose the most appropriate alternative and write the answer in the space provided below each question. $60 \times 1=60$

1. Let $\operatorname{Set} A=\{a, b, c, d\}$, $\operatorname{Set} B=\{b, c, e\}$, then $n(A \cap B)$ is
(A) 4
(B) 3
(C) 7
(D) 2 .

Ans. :
2. If $U=\{0,1,2,3,4\}, A=\{2,3,4\}, B=\{0,2,3\}$, then $(A \cap B)^{\prime}=$
(A) $\{0,1,2,3,4\}$
(B) $\{0,1,4\}$
(C) $\{1,4\}$
(D) $\}$.

Ans. : \qquad
3. Among 9 passengers, 5 can speak Kannada, 2 can speak both Kannada and English. The number of passengers who can speak only English is
(A) 5
(B) 3
(C) 4
(D) 6 .

Ans. :
4. In a progression, if $T_{n}=2 n-1$, the fourth term is
(A) 23
(B) 9
(C) 5
(D) 7 .

Ans. : \qquad
5. The value of $\sum_{1}^{10} n$ is
(A) 10
(B) 11
(C) 55
(D) 110 .

Ans. : \qquad
6. The common ratio in the Harmonic progression $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots \ldots$ is
(A) 2
(B) -2
(C) $\frac{1}{2}$
(D) 1 .

Ans. : \qquad
7. As n approaches ∞, S_{∞} is
(A) $\frac{a}{(1-r)}$
(B) $\frac{(1-r)}{a}$
(C) $a r^{n-1}$
(D) $a r^{\circ}$.

Ans. : \qquad
8. The Geometric Mean (G.M.) between 4 and 16, is
(A) 4
(B) 16
(C) 8
(D) 12 .

Ans. : \qquad

81-E
4
9. If $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $I A$ is
(A) $\left[\begin{array}{ll}4 & 2 \\ 1 & 5\end{array}\right]$
(B) $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
(C) $\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$.

Ans. : \qquad
10. If $\left[\begin{array}{cc}3 x & 1 \\ 5 & 4\end{array}\right]+\left[\begin{array}{ll}5 & 2 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}8 & 3 \\ 6 & 4\end{array}\right]$, then x is equal to
(A) 3
(B) 0
(C) - 3
(D) 1 .

Ans. : \qquad
11. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right], B=\left[\begin{array}{lll}0 & 2 & 4 \\ 1 & 2 & 5\end{array}\right]$, then which is possible among the following?
(A) $A+B$
(B) $A-B$
(C) $A B$
(D) $B A$.

Ans. : \qquad
12. The value of $5 P_{2}-4 P_{0}+3 P_{1}$ is
(A) 22
(B) 13
(C) 9
(D) 4 .

Ans. : \qquad
13. The number of ways we can arrange two books among 4 different books in a shelf, so that they are always together, is
(A) $4 P_{2}$
(B) $3 P_{3} \times 2 P_{2}$
(C) $4 C_{2}$
(D) $3 C_{3} \times 2 C_{2}$.

Ans. : \qquad
14. The number of combinations of the letters of the word 'CAKE' is
(A) 8
(B) 24
(C) 1
(D) 0 .

Ans. : \qquad
15. The average of given numbers is 20 and coefficient of variation is $0 \cdot 1$, then Standard Deviation is
(A) 2
(B) $0 \cdot 2$
(C) 20
(D) 0.02 .

Ans. : \qquad
16. Standard Deviation of runs of a batsman in 10 innings is $1 \cdot 6$. Then variance is
(A) 2.56
(B) 16
(C) 0.8
(D) $3 \cdot 2$.

Ans. : \qquad
17. The product of H.C.F. and L.C.M. of two expressions is $6 a^{3} b^{4} c^{2}$. If one expression is $2 a^{3} b^{3} c^{2}$, then the other is
(A) $3 a b c$
(B) $6 b c$
(C) $3 b$
(D) $3 b c$.

Ans. : \qquad
18. The H.C.F. of $\left(P^{2}-4\right)$ and $\left(P^{2}-5 P+6\right)$ is
(A) $\quad P-4$
(B) $P-2$
(C) $P+4$
(D) $P+2$.

Ans. : \qquad
19. The L.C.M. of $(3 x-9)$ and $\left(5 x^{2}-45\right)$ is
(A) $x-3$
(B) $3(x+3)(x-3)$
(C) $5(x+3)$
(D) $15\left(x^{2}-9\right)$.

Ans. : \qquad
20. When \sum notation is used, the expression $x^{2}+y^{2}+z^{2}-x-y-z$ becomes
(A) $\sum\left(x^{2}+x\right)$
(B) $\sum_{x y z}\left(x-x^{2}\right)$
(C) $\sum_{x y z} x^{2}+\sum_{x y z} x$
(D) $\sum_{x y z}\left(x^{2}-x\right)$.

Ans. : \qquad
(A) $p^{2}+q^{2}+r^{2}$
(B) p^{2}
(C) q^{2}
(D) $p q r$.

Ans. : \qquad
22. If the sum of three numbers is 0 and the sum of the cubes of the same numbers is 99 , then the product of those numbers is
(A) 9
(B) 33
(C) 24
(D) 30 .

Ans. : \qquad
23. If $a+b+c=0$, then which is equal to $(b+c)(c+a)$?
(A) $a b$
(B) $b c$
(C) $c a$
(D) $a b c$.

Ans. : \qquad
24. Pure surd of $2 \sqrt[3]{5}$ is
(A) $\sqrt[3]{10}$
(B) $\sqrt[3]{30}$
(C) $\sqrt[3]{40}$
(D) $\sqrt[3]{20}$.

Ans. : \qquad
25. The rationalising factor of $a \sqrt{b}+c$ is
(A) $a \sqrt{b}+c$
(B) $a \sqrt{b}-c$
(C) $a \sqrt{b}$
(D) \sqrt{b}.

Ans. : \qquad
(A) $\frac{\sqrt{3}}{5}$
(B) $\frac{\sqrt{15}}{3}$
(C) $\frac{3}{5}$
(D) $\frac{3 \sqrt{5}}{5}$.

Ans. : \qquad
27. When the equation $4 a=\frac{36}{a}$ is solved, the value of a is
(A) ± 9
(B) +3
(C) -3
(D) ± 3.

Ans. : \qquad
28. The standard form of the equation $2 x=5-x^{2}$ is
(A) $2 x-5+x^{2}=0$
(B) $x^{2}+2 x-5=0$
(C) $x^{2}-2 x+5=0$
(D) $2 x-5-x^{2}=0$.

Ans. : \qquad
29. The quadratic equation whose roots are $(3 \pm \sqrt{5})$ is
(A) $x^{2}-6 x+4=0$
(B) $x^{2}-3 x+5=0$
(C) $x^{2}+3 x-5=0$
(D) $x^{2}+6 x+4=0$.

Ans. : \qquad
30. If the roots of a quadratic equation are real and distinct, then which of the following is correct?
(A) $\Delta>0$
(B) $\Delta<0$
(C) $\Delta=0$
(D) $\Delta \leq 0$.

Ans. : \qquad
31. The sum of the roots of the quadratic equation $2 x^{2}-5 x+6=0$ is
(A) $-\frac{5}{2}$
(B) 3
(C) $\frac{5}{2}$
(D) $\frac{2}{5}$

Ans. : \qquad
32. If the roots of the quadratic equation $m x^{2}+6 x+1=0$ have to be equal, then the value of m is
(A) 6
(B) 1
(C) 9
(D) 5 .

Ans. : \qquad
33. If 0 is one root of the equation $x^{2}-5 x=0$, then the other root is
(A) 0
(B) -5
(C) +5
(D) ± 5.

Ans. : \qquad
34. If $2 y \equiv 1(\bmod 5)$, then the value of y is
(A) 2
(B) 5
(C) 6
(D) 3 .

Ans. : \qquad
35. 17th hour of the day is equivalent to 5th hour. This relationship is expressed as
(A) $17 \equiv 5(\bmod 12)$
(B) $12 \equiv 5(\bmod 17)$
(C) $17 \equiv 12(\bmod 5)$
(D) $17 \equiv 5(\bmod 24)$.

Ans. : \qquad
36. The product of $5 \otimes_{11} 10$ is
(A) 50
(B) 55
(C) 110
(D) 6 .

Ans. : \qquad
37. In figure, $A B=C D=8 \mathrm{~cm}$ and $O X=3 \mathrm{~cm}$ then $O C$ is

(A) 8 cm
(B) 4 cm
(C) 3 cm
(D) 5 cm .

Ans. : \qquad
38. In the given figure, the Transverse common tangent is

(A) $X Y$
(B) $P Q$
(C) $A B$
(D) $\mathrm{O}_{1} \mathrm{O}_{2}$.

Ans. : \qquad
39. In the trapezium $A B C D, \overline{A B} \| \overline{C D}$ and the diagonals intersect at O. Then $\frac{O D}{O C}$ is equal to

(A) $\frac{O B}{O A}$
(B) $\frac{A B}{C D}$
(C) $\frac{O C}{O D}$
(D) $\frac{A C}{B D}$.

Ans. : \qquad
40. In the given figure, value of $P Q$ is

(A) 10 m
(B) 7.5 m
(C) 9.5 m
(D) 3.5 m .

Ans. : \qquad
41. Select the set of numbers in the following which can form similar triangles.
(A) $9,12,18$ and $3,4,6$
(B) $3,4,6$ and $9,10,12$
(C) 8, 6, 12 and 2, 6, 3
(D) $3,4,5$ and $2,4,10$.

Ans. : \qquad
42. Two similar triangles have areas 120 sq.cm and $480 \mathrm{sq} . \mathrm{cm}$ respectively. Then the ratio of any pair of corresponding sides is
(A) $1: 4$
(B) $1: 2$
(C) $4: 1$
(D) $2: 3$.

Ans. : \qquad
43. If two triangles are equiangular, then their corresponding sides are
(A) proportional
(B) inversely proportional
(C) not proportional
(D) not inversely proportional.

Ans. : \qquad
44. In the given figure, $\angle A B C=\angle A Y X$, then the ratio of the corresponding sides is

(A) $\frac{A X}{A C}=\frac{A B}{A Y}=\frac{C B}{X Y}$
(B) $\frac{A B}{A Y}=\frac{B C}{X Y}=\frac{A X}{A C}$
(C) $\frac{A B}{A X}=\frac{A C}{A Y}=\frac{B C}{X Y}$
(D) $\frac{A X}{A C}=\frac{A Y}{A B}=\frac{X Y}{C B}$.

Ans. : \qquad
45. A ladder 13 m long rests against a wall at a height 12 m from the ground. Then the distance of the foot of the ladder from the wall is
(A) 1 m
(B) 25 m
(C) 5 m
(D) 12.5 m .

Ans. : \qquad
46. Major arc in a circle subtends
(A) an acute angle
(B) a right angle
(C) an obtuse angle
(D) a reflex angle.

Ans. : \qquad
47. Two circular discs of radii 4.5 cm and 2 cm are fixed to a string of length 10 cm as shown. Then the diameter of another disc which touches in circular discs at P and Q is

(A) 6.5 cm
(B) 2.5 cm
(C) 1.75 cm
(D) 3.5 cm .

Ans. : \qquad
48. Two circles of radii 8 cm and 5 cm touch internally. Then the distance between the centres is
(A) 13 cm
(B) 3 cm
(C) 5 cm
(D) 6 cm .

Ans. : \qquad
49. A tangent is drawn to a circle of radius 8 cm from a point which is at a distance of 10 cm from the centre of the circle. Then the length of tangent is
(A) 8 cm
(B) 18 cm
(C) 2 cm
(D) 6 cm .

Ans. : \qquad
50. From the figure, $A P=3 \mathrm{~cm}$ and $P C=8 \mathrm{~cm}$, then the length of the tangent $C D$ is

(A) 11 cm
(B) 5 cm
(C) 7 cm
(D) 8 cm .

Ans. : \qquad
51. In the figure, $P A$ and $P B$ are the tangents and $\angle A O B=140^{\circ}$. Then the measure of $\angle A P O$ is

(A) 90°
(B) 40°
(C) 20°
(D) 180°.

Ans. : \qquad
52. Formula for Lateral surface area of a cylinder is
(A) $\pi r h$
(B) $\pi r^{2} h$
(C) $2 \pi r h$
(D) $2 \pi r^{2} h$.

Ans. : \qquad
53. The curved surface area of a cone, whose circumference of the base is 66 cm and slant height is 12 cm , is
(A) 396 sq.cm
(B) $792 \mathrm{sq} . \mathrm{cm}$
(C) 78 sq. cm
(D) $54 \mathrm{sq} . \mathrm{cm}$.

Ans. : \qquad
54. A solid plastic sphere is melted and converted to a solid cube, then there will be no change in its
(A) length
(B) breadth
(C) area of surface
(D) volume.

Ans. : \qquad
55. Area of the base of a circular cylinder is $154 \mathrm{sq} . \mathrm{cm}$ and height is 10 cm . Then volume of cylinder is
(A) 1540 c.c.
(B) $15 \cdot 4$ c.c.
(C) 164 c.c.
(D) 144 c.c.

Ans. : \qquad
56. Total area of solid hemisphere is
(A) $4 \pi r^{2}$
(B) $2 \pi r^{2}$
(C) $3 \pi r^{2}$
(D) πr^{2}.

Ans. : \qquad
57. Euler's formula for all graphs is
(A) $V+F=E+2$
(B) $N+R=A-2$
(C) $N+R=A+2$
(D) $N+A=R+2$.

Ans. : \qquad
58. Shape of each face of Hexahedron is
(A) equilateral triangle
(B) regular pentagon
(C) square
(D) rectangle.

Ans. : \qquad
59. Number of regions in the given network is

(A) 3
(B) 2
(C) 5
(D) 4 .

Ans. : \qquad
60. The sum of the order of nodes in the given network is

(A) 3
(B) 4
(C) 5
(D) 10 .

Ans. : \qquad

PART - B

61. If $A=\{3,4,5,9\}, B=\{4,5,6,8\}$ and $C=\{5,7,8,9\}$, show that Interaction of sets is associative.
62. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$, then find $A^{2}-2 A$.
63. There are 7 badminton players. Ashaya is one of them. In how many ways can 5 players be selected including Ashaya ?
64. Find the 'Variance' for the given frequency table :

Class-interval	Frequency (\boldsymbol{f})
$1-5$	2
$6-10$	3
$11-15$	4
$16-20$	1

$$
\text { 81-E } 20
$$

65．Find the H．C．F．of $2 m^{2}+2 m+m^{3}+1$ and $2 m+1+m^{2}$ ． 2
66. If $a+b+c=0$, then show that $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3$.
67. Find the product of $\sqrt{3}$ and $\sqrt[3]{6}$.
68. If $B=\frac{\sqrt{3} a^{2}}{4}$, solve for a and also find the value of a if $B=16 \sqrt{3}$.

69．Solve the quadratic equation $x^{2}-7 x+12=0$ by using the formula．
70. The base of a triangle is 4 cm longer than its altitude. If the area of the triangle is 48 sq.cm, find the altitude.
71. Construct a tangent to a circle of radius 2 cm from a point 5 cm away from its centre.
72. Draw a rough sketch from the following notes of a field book and find the area of the field :

73．The middle term of an Arithmetic Series consisting of 25 terms is 20．Find the sum of the series．
74. Prove that 'in a right-angled triangle, square on the hypotenuse is equal to the sum of the squares on the other two sides".

75．Construct a direct common tangent to two circles of radii 3.5 cm and 2 cm whose centres are 8 cm apart． 4
76. Solve the quadratic equation $x^{2}+x-2=0$ graphically.
graph

