GGSIPU physics 2010

1. A wire whose cross-section area is $4 \mathrm{~mm}^{2}$ is stretched by 0.1 mm by a certain weight. How far will a wire of the same material and length stretch, If its cross-sectional area is $\mathbf{8} \mathbf{~ m m}^{2}$ and the same weight is attached?

$$
\begin{aligned}
& \text { a } 0.5 \mathrm{~mm} \quad \text { b } \quad 1.0 \mathrm{~mm} \\
& \text { c } 0.05 \mathrm{~mm} \quad \text { d } 0.06 \mathrm{~mm}
\end{aligned}
$$

2. A body has a charge of -2μ C.If it has 2.5×10^{13} protons, then how many electrons the body ha ?
a 1.25×10^{13} b 2.5×10^{13}
c 3.75×10^{13} d None of these
3. When light passes from one medium to other, then which of the following maychange ?
a Velocity and frequency
b Frequency and colour
c Velocity,wavelength and colour
d Velocity and wavelength
4. Mark the correct option.
a Ampere's law states that flux B th rough any closed surface is μ_{0} times the current passing through the area bounded by closed surface
b Gauss's law for magnetic field in magnetostatics serves the same purpose as Gauss's law for electric for electric field in electrostatics
c gauss's law for magnetic field states that the flux of B through any closed surface is always zero, wheather or not there are currents within the surface
d All the above
5. When a particle is moving in vertical circle,
a its redial and tangential acceleration both are constant
b its redial and tangential acceleration both are varying
c its redial acceleration is constant but tangential acceleration is
d Its redial acceleration is varying but tangential acceleration is
constant
6. 1 g of steam at $100^{\circ} \mathrm{C}$ mass of ice at $0^{\circ} \mathrm{C}$ are mixed. The temperature of the mixture in steady state will be latent heat of stem $=\mathbf{5 4 0} \mathbf{~ c a l} / \mathrm{g}$, latent heat of ice $=80 \mathrm{cal} / \mathrm{g}$
a $50{ }^{\circ} \mathrm{C}$
b $100{ }^{\circ} \mathrm{C}$
c $67{ }^{\circ} \mathrm{C}$
d $33{ }^{\circ} \mathrm{C}$
7. A tuning fork of frequency 580 Hz is employed to produce transverse waves on a long rope. The distance between the nearest crests is found to be 20 cm . The velocity of the wave is
a $58 \mathrm{~ms}^{-1}$
b $580 \mathrm{~ms}^{-1}$
c $20 \mathrm{~ms}^{-1}$
d $116 \mathrm{~ms}^{-1}$
8. Two instruments having stretched strings are being played in unison. When the tension of one of the instruments is increased by $\mathbf{1 \% , 3} \mathbf{3}$ beats are produced in $\mathbf{2}$ s. The initial frequency of vibration of each wire is
a 300 Hz
b 500 Hz
c 1000 Hz
d 400 Hz
9. A circular coil of 200 turns and redius 10 cm is placed in an uniform magnetic field of 0.1 T normal to the p, an of the coil.The coil carries a current of 5 A. The coil is made up of copper wire of crosssectional area $10^{-5} \mathrm{~m}^{2}$ and the number of free electrons per unit volume of copper is 10^{29}. The average force experienced by an electron in the coil due to magnetic field is
a 5×10^{-25}
b Zero
c 8×10^{-24}
d None of these
10. Long distance short-wave radio broad casting uses
a ground wave b ionospheric wave
c direct wave
d sky wave
11. If the chage of $10 \mu \mathrm{C}$ are given to two plates of a capacitor which are connected across a battery of 12 V , find the capacitance of the capacitor.
a $0.33 \mu \mathrm{~F}$
b $0.5 \mu \mathrm{~F}$
c $0.41 \mu \mathrm{~F}$
d $0.66 \mu \mathrm{~F}$
12. When 1 g of water changes from liquid to vapour phase at constant pressure of 1 atm,the volume increases from 1 cc to 1671 cc . The heat of vaporization at the pressure is $540 \mathrm{cal} / \mathrm{g}$.Find the increase in internal energy of water.
a 2268 J
b 2099.33 J
c 2000 J
d 2019.65 J .
13. With the usual notations, the following equations $s_{t}=u+\frac{1}{2} a 2 t-1$ is
a only numerically correct
b only dimensio nally correct
c Both numerically and dimensionally correct
d Neither numerically nor dimensionally correct
14. Abody is sliding down on a smooth inclined plane slides down the complete plane in
a 4 s
b 5 s
c 2 s
d 3 s
15. If a H_{2} nucleus is completely converted into energy, the energy produced will be around
a $\mathbf{1 M e V}$
b 939 MeV
c 9.39 MeV
d $\quad \mathbf{2 3 8} \mathbf{~ m e V}$
16. A taransistor is used in common-emitter configuration. Given its $\alpha=0.9$, calculate the change in collector current when the base current changes by $2 \mu \mathrm{~A}$.
a $1 \mu \mathrm{~A}$
b $0.9 \mu \mathrm{~A}$
c $30 \mu \mathrm{~A}$
d $18 \mu \mathrm{~A}$
17. A, B and C are parallel conductors of equal lengths carrying currents I, I and 21 respectively.Distance between A and B is x.Distance between B and C is also $x . F_{1}$ is thje force exerted by B on A. F_{2} is the force exerted by C on A.Choose the correct answer.

$$
\begin{array}{ll}
\mathrm{a} & \mathrm{~F}_{1}=2 \mathrm{~F}_{2} \\
\mathrm{~b} & \mathrm{~F}_{2}=2 \mathrm{~F}_{1} \\
\mathrm{c} & \mathrm{~F}_{1}=\mathrm{F}_{2}
\end{array}
$$

$$
\text { d } \quad F_{1}=-F_{2}
$$

18. What is the modulation index if an audio signal of amplitude one-half of the carrier amplitude is used in AM ?
a 1
b 0
c 0.5
d >1
19. A steel wire 10 m long and $10^{-5} \mathrm{~m}^{2}$ in cross-sectional area elongates by 0.01 m under a tension of 2500 N . Young's modules for steel from the data is computed as
a $2.5 \times 10^{7} \mathrm{Nm}^{-2}$
b $\quad 2.5 \times 10^{9} \mathrm{Nm}^{-2}$
c $2.5 \times 10{ }^{11} \mathrm{Nm}^{-2}$
d None of these
20. A wire of length L and radius r is fixed at one end. When a stretching force F is applied at free end,the elongation in the wire is I. When another wire of same material but of length $2 L$ and redius $2 r$, also fixed at one end is stretched by a force 2 F applied at free end, then elongation in the $2^{\text {nd }}$ wire will be
a $1 / 2$
b 1
c 21
d $1 / 4$
21. A block rest on a horizontal table which is executing SHM in the horizontal with an amplitude a if the coefficient of friction is μ, then the block just start to slip when the frequency of oscillation is
a $\frac{1}{2 x} \sqrt{\frac{\mu g}{a}}$
b $\quad 2 \pi \sqrt{\frac{a}{\mu g}}$
c $\frac{1}{2 \pi} \sqrt{\frac{a}{\mu g}}$
d $\sqrt{\frac{a}{\mu g}}$
22. Three objects coloured black,grey and white can withstand hostile conditions at $2800^{\circ} \mathrm{C}$.These objects are thrown into furnace where each of them attains a temperature of $2000^{\circ} \mathrm{C}$. Which object will glow brightest ?
a The white object
b The black object
c All glow with equal brightness

23. A black body is at temperature of 2800 K . The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wient's constant, $b=2.88 \times 10^{6} \mathrm{~nm}-K$. Then,
$a \mathrm{U}{ }_{1}=0$
b U ${ }_{3}=\mathbf{0}$
c U ${ }_{1}>\mathbf{U}_{2}$
d $U_{2}>U_{1}$
24. For light of wavelength 200 nm shines on an aluminium, 4.20 eV is required to eject an electron. What us te kinetic energy of the fastest ejected electrons ?
a $\frac{1240}{2}$
b $\frac{1200}{\lambda}$
C $\frac{\lambda}{1240}$
d $\frac{1360}{\lambda}$
25. Light of wavelength 200 nm shines on an aluminium, 4.20 eV is required to eject an electron. What is the kinetic energy of the fastest ejected electrons ?
a 0.5 eV
b 1.00 eV
c 2.00 eV d 4.00 eV
26. A body dropped from a height h with an initial speed zero reaches the ground with a velocity of 3 km / h.Another body of the same mass was dropped from the same height h with an initial speed $4 \mathrm{~km} / \mathrm{h}$ will reach the ground with a velocity of
a $3 \mathrm{~km} / \mathrm{h}$
b $4 \mathrm{~km} / \mathrm{h}$
c $5 \mathrm{~km} / \mathrm{h}$
d $12 \mathrm{~km} / \mathrm{h}$
27. When the plane surface of a planoconvex lens of refractive index 1.5 is silvered, it behaves like a concave mirror of focal length 30 cm . When its convex surface is silvered, it will behave like a concave mirror of focal length
a 10 cm
b 20 cm
c 30 cm d 45 cm
28. In the visible region of the spectrum the rotation of the plane of polarization is given by

$$
\theta=\mathbf{a}+\frac{\boldsymbol{b}}{\lambda^{2}}
$$

The optical rotation produced by a particular material is found to be 30° per mm at $\lambda=5000 \dot{A}$ and 50° per mm at $\lambda=4000 \dot{A}$. The value of constant a will be
$a+\frac{50^{0}}{9}$ per mm b $\quad-\frac{50^{0}}{9}$ per mm
$c \quad+\frac{9^{0}}{50}$ per $\mathrm{mm} \quad$ d $\quad-\frac{9^{0}}{50}$ per mm
29. 3.0 mW of 400 nm light is incident on a photoelectric cell, if 0.1% of the photons are contributing in ejection of electrons, then the current in the cell is
a $0.48 \mu \mathrm{~A}$
b resistance value not given
c zero
d $0.96 \mu \mathrm{~A}$
30. The scale of a spring balance reading from 0 to 10 kg is 0.25 m long. A body suspended from the balance oscillates vertically with a period of $\pi / 10 \mathrm{~s}$. The mass suspended is neglect the mass of the spring
a 10 kg
b 0.98 kg
c 5 kg
d 20 kg
31. At the height 80 m , an aeroplane is moving with $150 \mathrm{~m} / \mathrm{s}$. A bomb is dropped from it so as to hit a target. At what distance from the target should the bomb be dropped?
Given g = $10 \mathrm{~m} / \mathrm{s}^{2}$
a 605.3 m

b 600 m	
c $\quad 80 \mathrm{~m}$	d 230 m

32. A spring balance and a physical balance are kept in a lift. In these balances equal masses are placed. If now the lift starts moving upwards with constant acceleration, then
a the reading of spring balance will increase and the equilibrium position of the physical balance will disturb
b the reading of spring balance will remain unchanged and physical balance will remain in equilibrium
c the reading of spring balance will decrease and physical balance will remain in equilibrium
d the reading of spring balance will increase
33. Starting from rest a body sliudes down a 45° down the same distance in the absence of friction. The caefficient of friction between the body and inclined plane is

a 0.33
b 0.25
$\begin{array}{lll}c & 0.75 & d \\ 0.80\end{array}$
34. A bomb of mass 1 kg explodes into 2 pieces of mass 3 kg and 6 kg . The velocity of mass 3 kg is 1.6 m / s, the KE of mass 6 kg is
a 3.84 J
b $\quad 9.6 \mathrm{~J}$
c 1.92 J
d 2.92 J
35. There are two bodies of masses 100 kg and 10000 kg separated by a distance 1 m . At what distance from the smaller body, the intensity gravitational field will be zero?
a $\quad \frac{1}{9} \mathrm{~m}$
b $\quad \frac{1}{10} \mathrm{~m}$
C $\frac{1}{11} \mathrm{~m}$
d $\frac{10}{11}$
36. If longitudinal strain for a wire is 0.03 and its poisson ratio is 0.5 , then its lateral strain is
a 0.003
b 0.0075
c 0.015
d 0.4
37. Equal masses of water and a liquid of density 2 are mixed together, then the mixture has density of
a $\frac{2}{3}$
b $\frac{4}{3}$
C $\frac{3}{2}$
d 3
38. The volume of a gas at $21^{0} \mathrm{C}$ temperature and 76.8 mm pressure is 1 L .If the density of the gas is $1.2 \mathrm{~g} / \mathrm{L}$ at NTP, then its mass will be
a 4 g
b 4.21 g
c 1.13 g
d 10 g
39. When heat is given to gas in an isothermal change, the result will be
a external work done
b rise in temperature
c in crease in internal energy
d external work done and also rise in temperature
40. The tepperature gradient of 0.5 m long rod is $80^{\circ} \mathrm{C} / \mathrm{m}$. If the temperature of hotter end of the rod is $30^{\circ} \mathrm{C}$, then the temperature of the cooler end is
a $40{ }^{\circ} \mathrm{C}$
b $\quad-10^{\circ} \mathrm{C}$
c $10{ }^{0} \mathrm{C}$
d $0^{0} \mathrm{C}$
41. For any SHM, amplitude is $\mathbf{6 m}$. If instantaneous potential energy is half the total energy energy then distance of particle from its mean position is
a 3 cm
b 4.2 cm
c 5.8 cm
d 6 cm
42. Electric potential at any point is $V=-5 x+3 y+\sqrt{15} z$, then the magnitude of the electric field is
a $3 \sqrt{2}$
b $4 \sqrt{2}$
c $5 \sqrt{2}$
d 7
43. The insulation property of air breaks down at $\mathrm{E}=3 \times 10^{6} \mathrm{~V} / \mathrm{m}$. The maximum charge that can be given to a sphere a diameter 5 m is approximatelyin coulomb
a 2×10^{-2}
b 2×10^{-3}
c 2×10^{-4}
d 2×10^{-5}
44. Two wires A and B of same material and mass have their lengths in the ratio 1:2. On connecting them to the same source, the rate of heat dissipation in B is found to be 5 W . The rate of heat B dissipation in A, is
a 10 W
b 5 W
c 20 W
d None of these
45. Maximum kinetic energy of the positive ion in the cyclotron is
a $\frac{q^{2} B r_{0}}{2 m}$
b $\frac{q^{2} B^{2} r_{0}}{2 m}$
C $\frac{q^{2} B^{2} r_{0}^{2}}{2 m}$
d $\frac{q B r_{0}}{2 r^{2}}$
46. The magnet flux can be completely demagnized by
a breaking the magnet into small piece
b heating it slightly
c droping it into ice cold water
47. The magnetic flux linked with a coil at any instant t is given by $\phi=5 t^{3}-100 t+300$, the emf induced in coil in the coil at $t=2 s$ is
a $1.4 \mathrm{eV} \quad \mathrm{b} \quad 1.1 \mathrm{eV}$
c 5.4 eV
d 6.8 eV
48. A photon of energy 3.4 eV is incident on a metal having work function 2 eV . The maximum KE of photo electrons is equal to
a 1.4 eV
b 1.1 eV
c 5.4 eV
d 6.8 eV
49. Order of magnitude of density of uranium nucleus is $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
a $10{ }^{20} \mathrm{~kg} / \mathrm{m}^{3}$
b $10{ }^{17} \mathrm{~kg} / \mathrm{m}^{3}$
c $10{ }^{14} \mathrm{~kg} / \mathrm{m}^{3}$
d $10{ }^{11} \mathrm{~kg} / \mathrm{m}^{3}$
50. A ball is thrown from the ground with a velocity of $20 \sqrt{3} \mathrm{~ms}^{-1}$ making an angle of 60° withb the horizontal.The ball will be at a height of 40 m from the ground after a time t equal to $g=10 \mathrm{~ms}^{-2}$
a $\sqrt{2} s$
b $\sqrt{3}$ s
c 2 s
d 3 s

ய山山.questionpaperzin

