GGSIPU physics 2011

1. Light of wavelength λ strikes a photo emissive surface and electrons are ejected with kinetic energy E. If the kinetic energy is to be increased to $2 E$, then the wavelength meust be changed to' λ^{\prime}, where
a $\quad \lambda^{\prime}=\lambda / 2 \quad$ b $\quad \lambda^{\prime}=2 \lambda$
c $\lambda / 2<\lambda^{\prime}<\lambda$ d $\lambda^{\prime}>\lambda$
2. By increasing the temperature, the specific resistance of a conductor and a semiconductor
a increasing for both
b decreases for both
c increases, decreases
d decreases, increases
3. The least count of a top watch is $\mathbf{0 . 5}$ s. The time of $\mathbf{4 0}$ oscillations of the pendulum is found to be $\mathbf{4 0}$ s. The percentage error in the time period is
a 0.25\%
b 0.5\%
c 0.75\%
d 1.25%
4. The process of separating radio signal from the modulated wave is known as
a superimposition
b amplification
c demodulation
d modulation
5. A moving coil galvanometer has a coil of effective area A and number of turns N.The magnetic field B is radial. If a current I is passed through the coil, the torque acting on the coil is
a NA ${ }^{2} B^{2} I$
b NABI ${ }^{2}$
c $\mathrm{N}^{2} \mathrm{ABI}$
d NABI
6. If an ammeter is to be used in place of a voltmeter, then we must connect with the ammeter
a a low resistance in parallel
b a high resistance in parallel
c a high resistance in series
d a low resistance in series
7. When a man is standing, rain drops appear to him falling at 60° from the horizontal from his front side. When he is travelling at $5 \mathrm{~km} / \mathrm{f}$ on a horizontal road, they appear to him falling at 30° from the horizontal from his front side. The actual speed of the rain in km / h is
a 3
b 4
C 5
d 6
8. Suppose the gravitational force varies inversely as the nth power of distance, then the time period of a planet in circular orbit of radius R around the sun will be proportional to
a $R^{\frac{n+1}{2}}$
b $\boldsymbol{R}^{\frac{n-2}{2}}$
c R^{n}
d $R^{\frac{n-1}{2}}$
9. A liquid is kept in a cylindrical jar, which is rotated about the cylindrical axis. The liquid rises at its ends. The radius of the jar is r and speed of rotation is ω. The difference in height at the centre and the sides of jar is
a $\frac{r^{2} \Leftrightarrow g^{2}}{g}$
b $\frac{r^{2} \omega^{2}}{2 g}$
c $\frac{g}{r^{2} \omega^{2}}$
d $\frac{2 g}{r^{2} \Theta^{2}}$
10. Two rods of same lengths, radius and material transfer a given amount heat in $\mathbf{1 2} \mathbf{~ s}$. When they are joined das shown in the Fig.1. But when they are joined as shown in the Fig.2, they will transfer same heat in same conditions in

$\begin{array}{lll}\text { a } & 24 \mathrm{~s} & \text { b } 13 \mathrm{~s} \\ \text { c } & 15 \mathrm{~s} & \text { d } 48 \mathrm{~s}\end{array}$
11. The force F is given in terms of time t and displacement x by the equation $F=A \cos B x+C \sin D t$. The dimensional formula of D / B is
a $\left[M{ }^{0} L^{0} T^{0}\right]$
b $\left[\mathrm{M}^{0} \mathbf{L}^{0} \mathbf{T}^{-1}\right]$
c $\left[\mathrm{M}^{0} \mathbf{L}^{-1} \mathrm{~T}^{0}\right]$
d $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
12. A particle is moving eastwards with a velocity of $5 \mathrm{~m} / \mathrm{s}$. In 10 s , the velocity changes to $5 \mathrm{~m} / \mathrm{s}$ northimards. The average acceleration in this time is
a zelen
b $\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$ towards north－west
C $\quad \frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$ towards north－east
d $\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$ towards north
13．An iron chain lies on a rough horizontal table．It starts sliding when one－fourth of its length hangs over the edge of the table．The coefficient of static friction between the chain and surface of the table is
a $1 / 2$
b $1 / 3$
C $1 / 4$
d $1 / 5$

14．A boy pulls a 5 kg block along a 20 m long horizontal surface at a constant velocity by applying a horizontal force F ．If the coefficient of kinetic friction is 0.2 ，how much work does the boy do on the block？
$\mathrm{g}=10 \mathrm{~ms}^{-2}$
a $100 \mathrm{~J} \quad \mathrm{~b} 300 \mathrm{~J}$
c $200 \mathrm{~J} \quad \mathrm{~d} 400 \mathrm{~J}$
15．For a given suface the Gauss＇s law is started as $\int E . d s=0$ ．From this we can conclude that
a E is necessarily zero on the surface
b E is perpendicular to the surface a t every point
c the total flux through the surface is zero
d the flux is only going out the surface
16．The resistance of a conductor is
a inve rsely proportional to the length
b directly proportional to the square of the radius
c inversely proportional to the square of the radius
d direc tly proportional to the squre root of the length
17．Thé resistance of a bulb failment is 100Ω at a temperature at $100^{\circ} \mathrm{C}$ ．If its temperature coefficient of resistacé be 0.005 ／${ }^{\circ} \mathrm{C}$ ．Its resistance will become 200Ω at a temperature of
a $300{ }^{\circ} \mathrm{C}$
b $400{ }^{\circ} \mathrm{C}$
c $500{ }^{\circ} \mathrm{C}$
d $200{ }^{\circ} \mathrm{C}$
18. To supply maximum current, cells should be arranged in
a series
b parallel
c mixed grouping
d depends on the internal and the external resistance
19. The angle if minimum deviation measured with a prism is 30° and the angle of prism is 60°. The refractive index of the prism is
a $\sqrt{2}$
b 2
c $3 / 2$
d $4 / 3$
20. If the refractive index of a material of equilateral prism is $\sqrt{3}$, then angle of minimum deviation of the prism is
a $30{ }^{\circ}$
b $45{ }^{\circ}$
c $60{ }^{00}$
d $75{ }^{\circ}$
21. A car travels from A to B at a speed of $20 \mathrm{~km} / \mathrm{h}$ and returns at a speed of $30 \mathrm{~km} / \mathrm{h}$. The average speed of the car for the whole journey is
a $5 \mathrm{~km} / \mathrm{h}$
b $24 \mathrm{~km} / \mathrm{h}$
c $25 \mathrm{~km} / \mathrm{h}$
d $50 \mathrm{~km} / \mathrm{h}$
22. A dancer is rotating on smooth horizontal floor with an angular momentum L . The dancer folds her hands so that her momentof inertia decreases by 25%. The new angular momentum is
a $\frac{3 L}{4}$
b $\frac{L}{4}$
c $\frac{L}{2}$
d L
23. Match of the following.

	List I		List II
A	Magnetic field intensity	E	Wb / m
B	Magnetic flux	F	$\mathrm{Wb} / \mathrm{m}^{2}$
C	Magnetic potential	G	Wb
D	Magnetic inductor	H	Am^{-1}

a A-H, B-G, C-E, D-F
b A-G, B-H C-E, D-F
c A-E, B-H, C-G, D-F
d A-F, B-G, C-H, D-E
24. Which is the reading of spring balance shown in figure?

a $50 \mathrm{~kg} \quad$ b $\quad 100 \mathrm{~kg}$
b 75 kg d zero
25. The inherent property of all meter is
a diamagnetism
b paramagnetism
c ferromagnetism
d Both a and b
26. In an AC circuit V and I is given by

$$
\begin{aligned}
& V=1000 \sin (1000 \text { t)olt } \mid t \\
& I=100 \sin \left(1000 t+\frac{\pi}{6}\right) \mathrm{mA}
\end{aligned}
$$

The power dissipation in the circuit in one complete cycle is
a 25 W
b $25 \sqrt{3}$
c $\quad 100 \mathrm{~W}$
d 10 W
27. The transition from from the state $n=5$ to $n=1$ in a hydrogen atom results in UV radiation. Infrared radiation will be obtained in the transition
a $2 \rightarrow 1$
b $3 \rightarrow 2$
c $4 \rightarrow 3$
d $6 \rightarrow 2$
28. Assertion A Ductile metals are used to prepare thin wires.

Reason R In the stress strain curve of ductile metals, the length between the points representing elastic limit and breaking point is very small.
a Both A and R are true and R is the correct explanation of A.
$b \quad$ Both A and R are true but R is not the correct explanation of A
c A is true but R is false
d A is false but R is true
29. When water is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ its volume
a decreases continuously
b first decreases an d then increases
c first increases and then decreases
d increases continuously
30. A combination of two magnets perform 10 oscillations per minute with similar poles together and 6 oscillation per min with dissimilar poles together. The ratio of magnetic moments is
a $8: 17$
b 7:16
c $5: 18$
d $17: 8$
31. Dimensional formula for angular momentum
a [MLT]
b [ML $\left.{ }^{2} \mathrm{~T}\right]$
c $\left[\mathrm{M}^{0} \mathrm{LT}^{2}\right]$
d $\left[M{ }^{0} L^{0} T^{0}\right]$
32. A man is standing on a weighing machine placed in a lift. When stationary, his weight is recorded as 40 kg . If the lift is accelerated upward with an acceleration of $\mathbf{2 ~ m} / \mathrm{s}^{\mathbf{2}}$, then the weight recorded in the machine will be $g=10 \mathrm{~m} / \mathrm{s}^{2}$
a 48 kg
b 32 kg
C $\quad 42 \mathrm{~kg}$
d 40 kg
33. The length of a second pendulum at the surface of earth is 1 m . The length of second pendulum at the surface of moon, where g is $1 / 6$ th that of earth's surface
a $1 / 6 \mathrm{~m}$
b $\quad 6 \mathrm{~m}$
b $1 / 36 \mathrm{~m}$ d 36 m
34. Specific heat at constant C_{v} and at constant pressure C_{p} of an ideal gas have been reported as shown below. Which of the following sets are most reliable? The unit is cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
a $C_{v}=5 ; C_{p}=3$
b $C_{v}=3 ; C_{p}=4$
c $C{ }_{v}=5 ; C_{p}=7$
d $C{ }_{v}=3 ; C_{p}=5$
35. A ray is reflected in turn by three plane mirrors mutually at right angles to each other. The angle between the incident and the reflacted rays is
a 180°
b 0^{0}
C 90°
d 45°
36. If yellow light emitted by sodium lamp in young's double slit experiment is replaced by monochromatic blue light of same intensity, Keeping other parameters constant the new fringe width will
a remain unchanged
b increase
c decreas e
d Can't be predicted
37. The best instrument for accurate measurement of emf of a cell
a potentiometer
b meter bridge
c voltmeter
d ammeter and voltmeter
38. The sensitivity of moving coil galvanometer can be increased by decreasing
a number of turns of the coil
b magnetic field
c area of the coil
d coupler per unit twist of suspension
39. When an electron moves in a transverse magnetic field its path becomes magnetic field its path becomes
a circular b straight line
b parallel
d parabolic
40. The escape velocity on a planet is v. If the radius of the planet contracts to $1 / 4$ th of present value without any change in its mass, the escape velocity will be
a halved
b doubled
c quadruped d becomes -one-fourth
41. A point object is located at a point Q is in a glass slab as shown in the figure. The distance of the object as measured by an obse $p \boldsymbol{d}$ at \mathbf{p} will be $\mu=1.5$

a 7 cm
b 6
cm
c 5 cm
d
42. If a projectile crosses two walls symmetrically as shown in figure . statement $\mathbf{g}=10 \mathrm{~ms}^{-2}$

a Time of flight is 8 s
b The height of each wall is $\mathbf{6 0} \mathbf{~ m}$
c The maximum height of projectile is 80 m
d All of the above
43. An electron enters into a space between the plates of parallel plate capacitor at an angle to α with the plates and leaves at an angle of β to the plates. The ratio of its KE while entering the capacitor will be
a $\left(\frac{\cos \alpha}{\cos \beta}\right)^{2}$
(b) $\left(\frac{\cos \beta}{\cos \alpha}\right)^{2}$
c $\left(\frac{\sin \alpha}{\sin \beta}\right)^{2}$
d $\left(\frac{\sin \beta}{\sin \alpha}\right)^{2}$
44. The effective resistance between points P and Q of electrical circuit shown in the figure is

a $\frac{2 R r}{R+r}$
b $\frac{8 R(R+r)}{3 R+r}$
c $2 r+4 R$
d $\frac{5 R}{2}+2 r$
45. The maximum number of possible interference maxima for slip separation equal to twich the wavelength in young's double slit experiment is
a infinite
b five
c three
d zero
46. The combination of the gates shown below produces where G_{1} to G_{4} are NOR gates

B
G_{2}
a
AND gate
b XOR gate
C NOR gate
d NAND gate
47. If 3 A of current is flowing between points P and Q in the circuit, then the potentiasl difference between P and Q is

a 30 V b 22 V
c 20 V
d 15 V
48. A metal conductor of length 1 m rotates vertically about one of its ends at angular velocity 5 $\mathrm{rad} / \mathrm{s}$. If the horizontal components of earths magnetic field is $0.2 \times 10^{-4} \mathrm{~T}$, then the emf developed between the two ends of the conductor is
a $5 \mu \mathrm{~V}$
b 50μ
c 5 mV
d 50 mV
49. The angle at which reflected light is totally polarized for reflection from air to glass refractive index μ is
$a \sin { }^{-1} \mu b \sin { }^{-1} 1 / \mu$
c $\tan ^{-1} 1 / \mu \quad \mathrm{d} \quad \tan { }^{-1} \mu$
50. In L-C-R series circuit, the capacitor is changed from C to $4 C$. For the same resonant frequency, the inductance should be changed from L to
a 2 L
Lb
$\frac{L}{2}$
c $\frac{L}{4}$
d 4 L

