Harda Series: SMA/1 कोड नं. Code No. 65/1/1 रोल नं. Roll No. 9713 \$ \$ परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें । Candidates must write the Code on the title page of the answer-book. - कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 8 हैं । - प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें । - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 29 प्रश्न हैं । - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें । - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे । - Please check that this question paper contains 8 printed pages. - Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. - Please check that this question paper contains 29 questions. - Please write down the Serial Number of the question before attempting it. - 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer script during this period. # गणित ### **MATHEMATICS** निर्धारित समय : 3 घण्टे] Time allowed : 3 hours] [अधिकतम अंक : 100 [Maximum marks : 100 # सामान्य निर्देश: - (i) सभी प्रश्न अनिवार्य हैं । - (ii) इस प्रश्न पत्र में 29 प्रश्न हैं जो तीन खण्डों में विभाजित हैं ; अ, ब तथा स । खण्ड अ में 10 प्रश्न हैं जिनमें से प्रत्येक एक अंक का है । खण्ड स में 7 प्रश्न हैं जिनमें से प्रत्येक चार अंक का है । खण्ड स में 7 प्रश्न हैं जिनमें से प्रत्येक छ: अंक का है । - (iii) खण्ड **अ** में सभी प्रश्नों के उत्तर **एक** शब्द, **एक** वाक्य अथवा प्रश्न की आवश्यकता अनुसार दिए जा सकते हैं। - (iv) पूर्ण प्रश्नपत्र में विकल्प नहीं हैं । फिर भी **चार** अंकों वाले 4 प्रश्नों में तथा छ: अंकों वाले 2 प्रश्नों में आन्तरिक विकल्प हैं । ऐसे सभी प्रश्नों में से आपको एक ही विकल्प करना है । - (v) कैलकुलेटर के प्रयोग की अनुमित **नहीं** है। ### **General Instructions:** - (i) All questions are compulsory. - (ii) The question paper consists of 29 questions divided into three Sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each. - (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. - (iv) There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions. - (v) Use of calculators is not permitted. # खण्ड – अ SECTION – A प्रश्न संख्या 1 से 10 तक प्रत्येक प्रश्न का 1 अंक है । Question numbers 1 to 10 carry 1 mark each. - यदि एक रेखा के दिक् अनुपात 2, -1, -2 हैं, तो उसकी दिक् कोज्याएँ क्या हैं ? If a line has direction ratios 2, -1, -2, then what are its direction cosines ? - ्2. यदि $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ का $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ पर प्रक्षेप 4 इकाई है, तो ' λ ' का मान ज्ञात कीजिए । Find ' λ ' when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units. - 3. सिंदशों $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ तथा $\vec{c} = \hat{i} 6\hat{j} 7\hat{k}$ का योगफल ज्ञात कीजिए । Find the sum of the vectors $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} 6\hat{j} 7\hat{k}$. - 4. मान ज्ञात कीजिए : $\int_{2}^{3} \frac{1}{x} dx$ Evaluate : $\int_{2}^{3} \frac{1}{x} dx$ ्र मान ज्ञात कीजिए $$\int (1-x)\sqrt{x} \, \mathrm{d}x$$. Evaluate $\int (1-x)\sqrt{x} \, \mathrm{d}x$. ्रि. यदि $$\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$ है, तो अवयव a_{23} का उपसारिणक लिखिए : $$If \Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}, \text{ write the minor of the element } a_{23}.$$ 7. यदि $$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$$ है, तो x का मान लिखिए । If $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$, write the value of x . 8. सरल कीजिए : $$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$ Simplify: $\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$ 9. $$\cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right)$$ का मुख्य मान लिखिए । Write the principal value of $\cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right)$. 5 * 7. 1 4 4 #### खण्ड 🗕 ब #### SECTION - B प्रश्न संख्या 11 से 22 तक प्रत्येक प्रश्न 4 अंक का है । Question numbers 11 to 22 carry 4 marks each. 11. यदि $(\cos x)^y = (\cos y)^x$ है, तो $\frac{dy}{dx}$ ज्ञात कीजिए । - यदि $\sin y = x \sin(a + y)$ है, तो सिद्ध कीजिए कि $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$ है । If $(\cos x)^y = (\cos y)^x$, find $\frac{dy}{dx}$. OR If sin y = x sin(a + y), prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$. 12. एक व्यक्ति एक नयाय्य सिक्का कितनी बार उछाले कि कम से कम एक चित्त आने की प्रायिकता 80% से अधिक हो ? How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80%? 13. बिन्दु (1, 2, -4) से होकर जाने वाली उस रेखा का सदिश तथा कार्तीय समीकरण ज्ञात कीजिए जो दो रेखाओं $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ तथा $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ पर लम्बवत हो । Find the Vector and Cartesian equations of the line passing through the point (1, 2, -4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. 14. यदि \vec{a} , \vec{b} तथा \vec{c} तीन ऐसे सिदश हैं कि $|\vec{a}| = 5$, $|\vec{b}| = 12$ तथा $|\vec{c}| = 13$ है तथा $\vec{a} + \vec{b} + \vec{c} = \vec{o}$ है, तो $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ का मान ज्ञात कीजिए । If \vec{a} , \vec{b} , \vec{c} are three vectors such that $|\vec{a}| = 5$, $|\vec{b}| = 12$ and $|\vec{c}| = 13$, and $\vec{a} + \vec{b} + \vec{c} = \vec{o}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. 15. निम्नलिखित अवकल समीकरण को हल कीजिए : $$2x^2\frac{\mathrm{dy}}{\mathrm{dx}} - 2xy + y^2 = 0.$$ Solve the following differential equation: $$2x^2\frac{\mathrm{dy}}{\mathrm{dx}} - 2xy + y^2 = 0.$$ $$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$, दिया है कि $y = 1$ जब $x = 0$ है । Find the particular solution of the following differential equation; $$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$, given that y = 1 when x = 0. $$17$$ मान ज्ञात कीजिए : $\int \sin x \sin 2x \sin 3x \, dx$ अथवा मान ज्ञात कोजिए : $$\int \frac{2}{(1-x)(1+x^2)} \, \mathrm{d}x$$ Evaluate: $$\int \sin x \sin 2x \sin 3x \, dx$$ Evaluate: $$\int \frac{2}{(1-x)(1+x^2)} dx$$ 18. ब्रक्न $$y = x^3 - 11x + 5$$ पर वह बिन्दु ज्ञात कीजिए जिस पर स्पर्श रेखा का समीकरण $y = x - 11$ है । अथवा अवकलों का प्रयोग करके $\sqrt{49.5}$ का सिन्नकट (approximate) मान ज्ञात कीजिए । Find the point on the curve $y = x^3 - 11x + 5$ at which the equation of tangent is y = x - 11. Using differentials, find the approximate value of $\sqrt{49.5}$. ्19. यदि $$y = (\tan^{-1}x)^2$$ है, तो दर्शाइए कि $$(x^2 + 1)^2 \frac{d^2y}{dx^2} + 2x(x^2 + 1) \frac{dy}{dx} = 2.$$ If $$y = (\tan^{-1}x)^2$$, show that $$(x^2+1)^2\frac{d^2y}{dx^2} + 2x(x^2+1)\frac{dy}{dx} = 2.$$ 20. सारणिकों के गुणधर्मों का प्रयोग कर सिद्ध कीजिए कि $$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{bmatrix} a & p & x \\ b & q & y \\ c & r & z \end{bmatrix}$$ Using properties of determinants, prove that $$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{bmatrix} a & p & x \\ b & q & y \\ c & r & z \end{bmatrix}$$ 21. सिद्ध कीजिए कि $$\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$ अथवा सिद्ध कीजिए $$\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \cos^{-1}\left(\frac{36}{85}\right)$$. Prove that $$\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$ OR Prove that $\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \cos^{-1}\left(\frac{36}{85}\right)$. 22. माना $A = \mathbb{R} - \{3\}$ तथा $B = \mathbb{R} - \{1\}$ है । फलन $f: A \to B$ जो $f(x) = \left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित है, पर विचार कीजिए । दर्शाइए कि f एकैकी तथा आच्छादक है । अतः f^{-1} ज्ञात कीजिए । 4 Let $A = \mathbb{R} - \{3\}$ and $B = \mathbb{R} - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1} . #### खण्ड – स #### SECTION - C प्रश्न संख्या 23 से 29 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 23 to 29 carry 6 marks each. 23. बिंदुओं A(3, -1, 2), B(5, 2, 4) तथा C(-1, -1, 6) द्वारा निर्धारित समतल का समीकरण ज्ञात कीजिए । इस समतल की बिन्दु P(6, 5, 9) से दूरी ज्ञात कीजिए । Find the equation of the plane determined by the points A(3, -1, 2), B(5, 2, 4) and C(-1, -1, 6) and hence find the distance between the plane and the point P(6, 5, 9). 24. यह ज्ञात है कि एक महाविद्यालय के छात्रों में से 60% छात्रावास में रहते हैं तथा 40% छात्रावास में नहीं रहते हैं । पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहनेवाले 30% और छात्रावास में न रहने वाले 20% छात्रों ने वार्षिक परीक्षा में A ग्रेड लिया । वर्ष के अंत में महाविद्यालय के एक छात्र को यादृच्छया चुना गया और यह पाया गया कि उसे A ग्रेड मिला है । इस बात की क्या प्रायिकता है कि वह छात्र छात्रावास में रहने वाला है ? Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain 'A' grade and 20% of day scholars attain 'A' grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an 'A' grade, what is the probability that the student is a hostlier? 6 6 • 65/1/1 एक उत्पादक नट और बोल्ट का निर्माण करता है । एक पैकेट नटों के निर्माण में मशीन A पर 1 घंटा और मशीन B पर 3 घंटे काम करना पड़ता है जबिक एक पैकेट बोल्ट के निर्माण में 3 घंटे मशीन A पर तथा 1 घंटा मशीन B पर काम करना पड़ता है । वह नटों से प्रति पैकेट ₹ 17.50 तथा बोल्टों पर प्रति पैकेट ₹ 7 लाभ कमाता है । यदि प्रतिदिन मशीनों का अधिकतम प्रयोग 12 घंटे किया जाए तो नटों तथा बोल्टों में से प्रत्येक के कितने पैकेट उत्पादित किये जायें कि अधिकतम लाभ हो ? उपरोक्त को एक रैखिक प्रोग्रामन समस्या बनाकर ग्राफ की सहायता से हल कीजिए । 6 A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of ₹ 17.50 per package on nuts and ₹ 7 per package of bolts. How many packages of each should be produced each day so as to maximize his profits if he operates his machines for at the most 12 hours a day? Form the above as a linear programming problem and solve it graphically. 26. सिद्ध कीजिए कि $$\int_{0}^{\pi/4} \left(\sqrt{\tan x} + \sqrt{\cot x}\right) dx = \sqrt{2} \cdot \frac{\pi}{2}$$ अथवा $\int (2x^2+5x)\mathrm{d}x$ का मान योगों की सीमा के रूप में ज्ञात कीजिए । Prove that $$\int_{0}^{\pi/4} (\sqrt{\tan x} + \sqrt{\cot x}) dx = \sqrt{2} \cdot \frac{\pi}{2}$$ OR Evaluate $\int (2x^2 + 5x)dx$ as a limit of a sum. समाकल विधि का प्रयोग करके रेखाओं 3x - 2y + 1 = 0, 2x + 3y - 21 = 0 तथा x - 5y + 9 = 0 से 27. घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए । Using the method of integration, find the area of the region bounded by the lines 3x-2y+1=0, 2x+3y-21=0 and x-5y+9=0. दर्शाइए कि एक लंब वृत्तीय बंद बेलन, जिसका पृष्ठीय क्षेत्रफल दिया है तथा आयतन अधिकतम है, की ऊँचाई 28. उसके आधार के व्यास के बराबर है। Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base. [P.T.O. 65/1/1 29. /आव्यूहों का प्रयोग कर निम्नलिखित रैखिक समीकरण निकाय को हल कीजिए: $$x - y + 2z = 7$$ $$3x + 4y - 5z = -5$$ $$2x - y + 3z = 12$$ अथवा प्रारंभिक संक्रियाओं के प्रयोग द्वारा, निम्नलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए : $$\begin{pmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$ Using matrices, solve the following system of linear equations: $$x - y + 2z = 7$$ $$3x + 4y - 5z = -5$$ $$2x - y + 3z = 12$$ OR Using elementary operations, find the inverse of the following matrix: $$\begin{pmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$