- The geometric mean of three numbers was 76. computed as 6. It was subsequently found that, in this computation, a number 8 was wrongly read as 12. What is the correct geometric mean ? (a) (b)
  - Ahs: B None of the above
  - Let  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = [a_{ij}]$ , where i, j = 1, 2. If

(c)

(d)

(b)

(c)

78.

79.

 $2\sqrt[3]{18}$ 

- its inverse matrix is [bii], what is b22? (a) -2
- The angle A lies in the third quadrant and it satisfies the equation  $4 (\sin^2 x + \cos x) = 1$ .

  What is the measure of the angle A?

  (a)  $225^{\circ}$ (b)  $240^{\circ}$ ANGLE

8 square units

210°

(c) (d)

(a)

(b)

(c)

(d)

- None of the above
- What is the area enclosed between the curves
- $y^2 = 12x$  and the lines x = 0 and y = 6?
  - 2 square units Ans: C 4 square units
  - 6 square units

Ans: B

In a triangle ABC, BC =  $\sqrt{39}$ , AC = 5 ar

AB = 7. What is the measure of the ang

(c) (d)

A ?

81.

- What is the modulus of  $\frac{1+2i}{1-(1-i)^2}$
- Ans: A (d)
  - B(2k, 0, 2) is perpendicular to the l through the points B and C (2 + 2k, k, 1), th what is the value of k? (a) -1

If the line through the points A (k, 1, -1)  $\varepsilon$ 

- Ahs: )
- What is  $\int \frac{1}{1+e^x} dx$  equal to?

(c)  $x - ln (1 + e^x) + c$ 

(d)

- Ansic. (a) x - ln x + c
- (b) x ln (tan x) + c
- (d)  $ln(1 + e^{x}) + c$ where c is a constant of integration.

The vectors  $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ ,  $\vec{b} = x\hat{k}$ 84. The function  $f(x) = x \csc x$  is 88. continuous for all values of x c are such that they form a right-hand (b) discontinuous everywhere continuous for all x except at  $x = n\pi$ , system. What is c equal to? where n is an integer (d) continuous for all x except at  $x = n\pi/2$ , where n is an integer MS: (b) yj -xk Mrs:C What is the solution of the differential 85. (c) yi - xj

What is the solution of the different equation 
$$a\left(x\frac{dy}{dx} + 2y\right) = xy\frac{dy}{dx}$$
?

(b) 
$$yx^2 = kye^{\frac{y}{a}}$$
 Ans. B  
(c)  $y^2x^2 = kye^{\frac{y^2}{a}}$ 

None of the above

86.

A vector 
$$\vec{b}$$
 is collinear with the vector  $\vec{a} = (2, 1, -1)$  and satisfies the condition  $\vec{a} \cdot \vec{b} = 3$ . What is  $\vec{b}$  equal to?

(a)

(b) (c)

16 12

(a) 
$$(1, 1/2, -1/2)$$
  
(b)  $(2/3, 1/3, -1/3)$  Music A  
(c)  $(1/2, 1/4, -1/4)$ 

(d) (1, 1, 0)

What is the least positive integer n for which

$$\left(\frac{1+i}{n}\right)^n = 1?$$

the

If  $x = t^2$ ,  $y = t^3$ , then what is  $\frac{d^2y}{dx^2}$ 

(d)  $x\hat{i} - y\hat{j}$ 

What is

(a)

(d)

(b) 
$$\frac{1}{3}$$

- Let O(0, 0, 0), P(3, 4, 5), Q(m, n, r) 95.
  - R(1, 1, 1) be the vertices of a parallelogram taken in order. What is the value of m + n + r? (a)
    - Ansic.
    - More than 15
- What is the solution of the differential 92. equation  $3 e^x \tan y dx + (1 + e^x) \sec^2 y dy = 0$ ?

(b)

(d)

93.

94.

(c)

12

15

- (a)  $(1 + e^x) \tan y = c$ (b)  $(1 + e^x)^3 \tan y = c$
- (d)  $(1 + e^x) \sec^2 y = c$ where c is a constant of integration.

(c)  $(1 + e^x)^2 \tan y = c$ 

- What is the locus of points, the difference of whose distances from two points being constant?
  - (a) Pair of straight lines Ans: C
    - An ellipse A hyperbola
  - A parabola (d)
- What is the differential equation for  $y^2 = 4a (x - a)$ ?
- (a)  $yy' 2xyy' + y^2 = 0$ (b)  $yy' (yy' + 2x) + y^2 = 0$ (c)  $yy'(yy'-2x) + y^2 = 0$
- (d) vv' 2xvv' + v = 0

- If the angle between the vectors a and is  $\frac{\pi}{3}$ , what is the angle between  $-5\vec{a}$ 6 h ?
  - (a)

(d)  $\frac{3\pi}{7}$ 

(d) 6

96.

- Ans: B
- What is the degree of the differential equa
- $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} \sqrt{1 + \left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)^3} = 0 ?$ (a)
- (c) 3
- If  $\int x^2 \ln x \, dx = \frac{x^3}{m} \ln x + \frac{x^3}{n} + c$ , what are the values of m and n respective
  - (a) 1/3, -1/9
  - Ans: R
  - 3, 3 (d) where c is a constant of integration.