GATE question paper - Mathematics 2009 (MA)

Notations and Symbols used

A^{\top}

U (a, b)
$\mathrm{f}\left[\mathrm{x}_{0} \ldots \ldots . . \mathrm{x}_{\mathrm{k}}\right]$
$\binom{n}{r}$
$E(X)$
$: \quad\{x \in X: X \notin Y\}$
: \quad The set of all integers
: \quad The set of all numbers
: \quad The set of all real numbers
: \quad The set of complex numbers
$: \quad\left\{\left(x_{1}, \ldots \ldots, x_{n}\right): x_{i} \in R\right.$ for $\left.1 \leq i \leq n\right\}$
: The vector space of all sequences $\left\{x_{n}\right\}$ in C such that $\sum\left|x_{n}\right|<\infty$
The vector space of all sequences $\left\{x_{n}\right\}$ in C such that $x_{n} \neq 0$ for at most finitely many values of n
: \quad The p -norm for $1 \leq \mathrm{p}<\infty$
The transpose of the matrix A
Uniform distribution on the interval (a, b)
k th divided difference of f at $\mathrm{x}_{\mathrm{o}} \ldots \ldots . . \mathrm{x}_{\mathrm{k}}$
$\frac{n!}{r!(\bar{n}-r)!}$
Expectation of the random variable X

Q. 1-Q. 20 carry one mark each.

1. The dimension of the vector space $V=\left\{A=\left(a_{i j}\right)_{n \times n}: a_{i j} \in C, a_{i j}=-a_{i j}\right\}$ over the field R is
(A) n^{2}
(B) $\mathrm{n}^{2}-1$
(C) $n^{2}-n$
(D) $\frac{\mathrm{n}^{2}}{2}$
2. The minimal polynomial associated with the matrix $\left[\begin{array}{lll}0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$ is
(A) $x^{3}-x^{2}-2 x-3$
(B) $x^{3}-x^{2}+2 x-3$
(C) $x^{3}-x^{2}-3 x-3$
(D) $x^{3}-x^{2}+3 x-3$
3. For the function $f(Z)=\sin \left(\frac{1}{\cos (1 / z)}\right)$, the point $z=0$ is
(A) a removable singularity
(B) a pole
(C) an essential singularity
(D) a non-isolated singularity
4. Let $f(z)=\sum_{n=0}^{15} z^{n}$ for $z \in C$. If $C:|z-i|=2$ then $\oint_{C} \frac{f(z) d z}{(z-i)^{15}}=$
(A) $\quad 2 \pi i(1+15 i)$
(B) $2 \pi i(1-15 i)$
(C) $4 \pi i(1+15 i)$
(D) $\quad 2 \pi i$
5. For what values of α and β, the quadrature formula $\int_{-1}^{1} f(x) d x \approx \alpha f(-1)+f(\beta)$ is exact for all polynomials of degree ≤ 1 ?
(A)
$\alpha=1, \beta=1$
(B) $\alpha=-1, \beta=1$
(C) $\alpha=1, \beta=-1$
(D) $\quad \alpha=-1, \beta=-1$
6.

Let $f:[0,4] \rightarrow R$ be a three times continuously differentiable function. Then the value of $f[1,2,3,4]$ is
(A) $\frac{f^{\prime \prime}(\xi)}{3}$ forsome $\xi \in(0,4)$
(B) $\frac{f^{\prime \prime}(\xi)}{6}$ forsome $\xi \in(0,4)$
(C) $\frac{f^{\prime \prime}(\xi)}{3}$ forsome $\xi \in(0,4)$
(D) $\frac{f^{\prime \prime}(\xi)}{6}$ forsome $\xi \in(0,4)$
7. Which one of the following is TRUE?
(A) Every linear programming problem has a feasible solution.
(B) If a linear programming problem has an optimal solution then it is unique.
(C) The union of two convex sets is necessarily convex.
(D) Extreme points of the disk $x^{2}+y^{2} \leq 1$ are the points on the circle $x^{2}+y^{2}=1$.
8.

The dual of the linear programming problem:
Minimize $c^{\top} x$ subject to $A x \geq b$ and $x \geq 0$ is
(A) Maximize $b^{\top} w$ subject to $A^{\top} w \geq c$ and $w \geq 0$
(B) Maximize $b^{\top} w$ subject to $A^{\top} w \leq c$ and $w \geq 0$
(C) Maximize $b^{\top} w$ subject to $A^{\top} w \geq c$ and w is unrestricted
(D) Maximize $b^{\top} w$ subject to $A^{\top} w \geq c$ and w is unrestricted
9. The resolvent kernel for the integral equation $u(x)=F(x)+\int_{\log 2}^{x} e^{(t-x)} u(t) d t$ is
(A) $\quad \cos (x-1)$
(B) 1
(C) e^{t-x}
(D) $\quad e^{2(t-x)}$
10. Consider the metrics $d_{2}(f, g)=\left(\int_{a}^{b}|f(t)-g(t)|^{2} d t\right)^{1 / 2}$ and $d_{\infty}(f, g)=\sup |f(t)-g(t)|$ on the space $X=C[a, b]$ of all real valued continuous functions on [$a, b]$. Then which of the following is TRUE?
(A) Both $\left(\mathrm{X}, \mathrm{d}_{2}\right)$ and $\left(\mathrm{X}, \mathrm{d}_{\infty}\right)$ are complete.
(B) $\quad\left(X, d_{2}\right)$ is complete but $\left(X, d_{\infty}\right)$ is NOT complete.
(C) $\quad\left(X, d_{\infty}\right)$ is complete but $\left(X, d_{2}\right)$ is NOT complete.
(D) Both $\left(\mathrm{X}, \mathrm{d}_{2}\right)$ and $\left(\mathrm{X}, \mathrm{d}_{\infty}\right)$ are NOT complete.
11. A function $f: R \rightarrow R$ need NOT be Lebesgue measurable if
(A) f is monotone
(B) $\quad\{x \in R: f(x) \geq \alpha\}$ is measurable for each $\alpha \in Q$
(C) $\quad\{x \in R: f(x) \geq=\alpha\}$ is measurable for each $\alpha \in Q$
(D) For each open set G in $R, f^{-1}(G)$ is measurable
12. $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H and let $x(\neq 0) \in H$. Then
(A) $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle$ does not exist
(B)
(C) $\quad \lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=1$
(D) $\quad \lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=0$
13. The subspace $Q \times[0,1]$ of R^{2} (with the usual topology) is
(A) dense in R^{2}
(B) connected
(C) separable
(D) compact
14. $\quad \mathrm{Z}_{2}[\mathrm{x}] /\left\langle\mathrm{x}^{3}+\mathrm{x}^{2}+1\right\rangle$ is
(A) a field having 8 elements
(B) a field having 9 elements
(C) an infinite field
(D) NOT a field
15.

The number of elements of a principal ideal domain can be
(A) 15
(B) 25
(C) 35
(D) 36
16.

Let F, G and H be pairwise independent events such that $P(F)=P(G)=P(H)=\frac{1}{3}$ and $(F \cap G \cap H)=\frac{1}{4}$. Then the probability that at least one event among F, G and H occurs is
(A) $\frac{11}{12}$
(B) $\frac{7}{12}$.
(C) $\frac{5}{12}$
(D) $\frac{3}{4}$
17. Let X be a random variable such that $E\left(X^{2}\right)=E(X)=1$. Then $E\left(X^{100}\right)=$
(A) 0
(B) 1
(C) $\quad 2^{100}$
(D) $\quad 2^{100}+1$
18. $\$$ For which of the following distributions, the weak law of large numbers does NOT hold?
(A) Normal
(B) Gamma
(C) Beta
(D) Cauchy
19.

If $D \equiv \frac{d}{d x}$ then the value of $\frac{1}{(x D+1)}\left(x^{-1}\right)$ is
(A) $\quad \log x$
(B) $\frac{\log x}{x}$
(C) $\frac{\log x}{x^{2}}$
(D) $\frac{\log x}{x^{3}}$
20. The equation $\left(\alpha x y^{3}+y \cos x\right) d x+\left(x^{2} y^{2}+\beta \sin x\right) d y=0$ is exact for
(A) $\alpha=\frac{3}{2}, \beta=1$
(B) $\alpha=1, \beta=\frac{3}{2}$
(C)
$\alpha=\frac{2}{3}, \beta=1$
(D) $\alpha=1, \beta=\frac{2}{3}$
Q. 21 to Q. 60 carry two marks each.
21. If $\left[\begin{array}{ccc}1 & 0 & 0 \\ i & \frac{-1+i \sqrt{3}}{2} & 0 \\ 0 & 1+2 i & \frac{-1-i \sqrt{3}}{2}\end{array}\right]$
then the trace of A^{102} is
(A) 0
(B) 1
(C) 2
(D) 3
22. Which of the following matrices is NOT diagonalizable?
(A) $\quad\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
(B) $\quad\left(\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right)$
(C) $\quad\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(D) $\quad\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
23. Let V be the column space of the matrix $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 2 \\ 1 & -1\end{array}\right)$. Then the orthogonal projection of $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ on
(A) $\quad\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
(B) $\quad\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
(C) $\quad\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
(D) $\quad\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
24. Let $\sum_{n=-\infty}^{\infty} a_{n}(z+1)^{n}$ be the Laurent series expansion of $f(z)=\sin \left(\frac{z}{z+1}\right)$. Then $a_{-2}=$
(A) 1
(B) 0
(C) $\quad \cos (1)$
(D) $\frac{-1}{2} \sin (1)$
25. Let $u(x, y)$ be the real part of an entire function $f(z)=u(x, y)+i v(x, y)$ for $z=x+i y \in C$. If C is the positively oriented boundary of a rectangular region R in R^{2}, then $\oint_{C}\left[\frac{\partial u}{\partial y} d x-\frac{\partial u}{\partial x} d y\right]=$
(A) 1
(B) 0
(C) 2π
(D) π

Let $\phi:[0,1] \rightarrow R$ be three times continuously differentiable. Suppose that the iterates defined by $x_{n+1}=\phi\left(x_{n}\right), n \geq 0$ converge to the fixed point ξ of ϕ. If the order of convergence is three then
(A) $\phi^{\prime}(\xi)=0, \phi^{\prime \prime}(\xi)=0$
(B) $\phi^{\prime}(\xi) \neq 0, \phi^{\prime \prime}(\xi)=0$
(C) $\phi^{\prime}(\xi)=0, \phi^{\prime \prime}(\xi) \neq 0$
(D) $\quad \phi^{\prime}(\xi) \neq 0, \phi^{\prime \prime}(\xi) \neq 0$

Let $f:[0,2] \rightarrow R$ be a twice continuously differentiable function. If $\int_{0}^{2} f(x) d x \approx 2 f(1)$, the error in the approximation is
(A) $\frac{f^{\prime}(\xi)}{12}$ for some $\xi \in(0,2)$
(B) $\frac{f^{\prime}(\xi)}{2}$ for some $\xi \in(0,2)$
(C) $\frac{f^{\prime}(\xi)}{3}$ for some $\xi \in(0,2)$
(D) $\frac{f^{\prime}(\xi)}{6}$ for some $\xi \in(0,2)$
28.

For a fixed $t \in R$, consider the linear programming problem:

$$
\begin{gathered}
\text { Maximize } z=3 x+4 y \\
\text { Subject to } x+y \leq 100 \\
x+3 y \leq t
\end{gathered}
$$

and $x \geq 0, y \geq 0$,
The maximum value of z is 400 for $t=$
(A) 50
(B) 100
(C) 200
(D) 300
29. The maximum value of $z=2 x_{1}-x_{2}+x_{3}-5 x_{4}+22 x_{5}$ subject to

$$
\begin{aligned}
& x_{1}+x_{4}+x_{5}=6 \\
& x_{2}+x_{4}-4 x_{5}=3 \\
& x_{3}+3 x_{4}+2 x_{5}=10 \\
& x_{j} \geq 0, j=1,2 \ldots \ldots, 5
\end{aligned}
$$

(A) 28
(B) 19
(C) 10
(D) 9
30. Using the Hungarian method, the optimal value of the assignment problem whose cost matrix is given by
is
(A) 29
(B) 52
(C) 26
(D) 44
31. Which of the following sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions does NOT converge uniformly on [0, 1]?
(A) $\quad f_{n}(x)=\frac{e^{-x}}{n}$
(B) $\quad f_{n}(x)=(1-x)^{n}$
(C) $\quad f_{n}(x)=\frac{x^{2}+n x}{n}$
(D) $\quad f_{n}(x)=\frac{\sin (n x+n)}{n}$
32. Let $E=\left\{(x, y) \in R^{2}: 0<x<y\right\}$. Then $\iint_{E} y e^{-(x+y)} d x d y=$
(A) $\frac{1}{4}$
(B) $\frac{3}{2}$
(C) $\frac{4}{3}$
(D) $\frac{3}{4}$
33.

Let $f_{n}(x)=\frac{1}{n} \sum_{k=0}^{n} \sqrt{k(n-k)}\binom{n}{k} x^{4}(1-x)^{n-k}$ for $x \in[0,1], n=1,2 \ldots$ if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for $x \in[0,1]$, then the maximum value of $f(x)$ on $[0,1]$ is
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$

Let $\mathrm{f}:\left(c_{00},\|\cdot\|_{1}\right) \rightarrow C$ be a non-zero continuous linear functional. The number of Hahn-Banach extensions of f to $\left(\ell^{1},\|\cdot\|_{1}\right)$ is
(A) one
(B) two
(C) three
(D) infinite

If I: $\left(\ell^{1},\|\cdot\|_{2}\right) \rightarrow\left(\ell^{1},\|\cdot\|_{1}\right)$ is the identity map, then
(A) both I and I^{-1} are continuous
(B)
(C) $\quad I^{-1}$ is continuous but I is NOT continuous (D)
I is continuous but I^{-1} is NOT continuous
36. \gtrsim Consider the topology $\tau=\left\{G \subseteq R: R \backslash G\right.$ is compact in $\left.\left(R, \tau_{u}\right)\right\} \cup\{\phi, R\}$ on R, where τ_{u} is the usual topology on R and ϕ is the empty set. Then (R, τ) is
(A) a connected Hausdorff space (B) connected but NOT Hausdorff
(C) Hausdorff but NOT connected (D) neither connected nor Hausdorff
37. Let
and
$\tau_{1}=\{G \subseteq R: G$ is finite or $R \backslash G$ is finite $\}$
$\tau_{2}=\{\mathrm{G} \subseteq \mathrm{R}: \mathrm{G}$ is countable or $\mathrm{R} \backslash \mathrm{G}$ is countable $\}$
Then
(A) neither τ_{1} nor τ_{2} is a topology on R
(B) $\quad \tau_{1}$ is a topology on R but τ_{1} is NOT a topology on R
(C) $\quad \tau_{2}$ is a topology on R but τ_{2} is NOT a topology on R
(D) both τ_{1} and τ_{2} are topology on R
38. Which one of the following ideals of the ring $\mathrm{Z}[\mathrm{i}]$ of Gaussian integers is NOT maximal?
(A) $\langle 1+i\rangle$
(B) $\langle 1-\mathrm{i}\rangle$
(C) $\langle 2+\mathrm{i}\rangle$
(D) $\langle 3+i\rangle$
39. If $Z(G)$ denotes the centre of a group G, then the order of the quotient group $G / Z(G)$ cannot be
(A) 4
(B) 6
(C) 15
(D) 25
40. Let $\operatorname{Aut}(G)$ denote the group of automorphisms of a group G. Which one of the following is NOT a cycling group?
(A) Aut $\left(Z_{4}\right)$
(B) \quad Aut $\left(Z_{6}\right)$
(C) Aut $\left(Z_{8}\right)$
(D) $\quad \operatorname{Aut}\left(Z_{10}\right)$
41. Let X be a non-negative integer valued random variable with $E\left(X^{2}\right)=3$ and $E(X)=1$. Then $\sum_{i=1}^{\infty} \mathrm{iP}(X \geq i)=$
(A) 1
(B) 2
(C) 3
(D) 4
42. Let X be a random variable with probability density function $f \in\left\{f_{0}, f_{1}\right\}$, where

$$
f_{0}(x)=\left\{\begin{array}{l}
2 x, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array} \text { and } f_{1}(x)=\left\{\begin{array}{l}
3 x^{2}, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array}\right.\right.
$$

For testing the null hypothesis $H_{0}: f \equiv f_{0}$ against the alternative hypothesis $H_{1}: f \equiv$ at level of significance $\alpha=0.19$, the power of the most powerful test is
(A) 0.729
(B)
0.271
(C) 0.615
(D) 0.385
43. Let X and Y be independent and identically distributed $u(0,1)$ random variables.

Then $P\left(Y_{1},<\left(X-\frac{1}{2}\right)^{2}\right)=$
(A) $\frac{1}{12}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$
44.

Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a linear map. Consider the statements:
$P:$ if $x_{n} \rightarrow x$ in X then $T x_{n} \rightarrow T x$ in Y.
Q: if $x_{n} \rightarrow x$ in X and $T x_{n} \rightarrow y$ in Y then $T x=y$.
Then
(A) P implies Q and Q implies P
(B) $\quad \mathrm{P}$ implies Q but Q does not implies P
(C) $\quad Q$ implies P but P does not implies Q
(D) neither P implies Q nor Q implies P
45.

If $y(x)=x$ is a solution of the differential equation $y^{\prime \prime}=\left(\frac{2}{x^{2}}+\frac{1}{x}\right)\left(x y^{\prime}-y\right)=0,0<x<\infty$, then its general solution is
(A) $\quad\left(\alpha+\beta e^{-2 x}\right) x$
(B) $\quad\left(\alpha+\beta e^{2 x}\right) x$
(C) $\quad \alpha x+\beta e^{x}$
(D) $\quad\left(\alpha e^{x}+\beta\right) x$
46. 3 Let $P_{n}(x)$ be the Legendre polynomial of degree n such that $P_{n}(1)=1, n=1,2, \ldots \ldots$. If $\int_{-1}^{1}\left(\sum_{j=1}^{n} \sqrt{J(2 J+1)} p_{j}(X)\right)^{2} d x=20$, then $n=$
(A) 2
(B) 3
(C) 4
(D) 5
47. The integral surface satisfying the equation $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x^{2}+y^{2}$ and passing through the curve $x=1-t, y=1+t, z=1+r^{2}$ is
(A) $\quad z=x y+\frac{1}{2}\left(x^{2}-y^{2}\right)^{2}$
(B) $\quad z=x y+\frac{1}{4}\left(x^{2}-y^{2}\right)^{2}$
(C) $z=x y+\frac{1}{8}\left(x^{2}-y^{2}\right)^{2}$
(D)

$$
z=x y+\frac{1}{16}\left(x^{2}-y^{2}\right)^{2}
$$

48. For the diffusion problem $u_{x x}=u,(0<x<\pi, t>0) . u(0, t)=0, u(\pi, t)=0$ and $u(x, 0)=3 \sin 2 x$, the solution is given by
(A) $3 e^{-t} \sin 2 x$
(B) $3 e^{-4 t} \sin 2 x$
(C) $3 e^{-9 t} \sin 2 x$
(D) $3 e^{-2 t} \sin 2 x$
49. A simple pendulum, consisting of a bob of mass m connected with a string of length a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical, then the expression for the
Lagrangian is given as
(A) $\quad \operatorname{ma}^{2}\left(\dot{\theta}^{2}-\frac{2 g}{a} \sin ^{2}\left(\frac{\theta}{2}\right)\right)$
(B) $2 m g a \sin ^{2}\left(\frac{\theta}{2}\right)$
(C) $\quad \operatorname{ma}^{2}\left(\frac{\dot{\theta}^{2}}{2}-\frac{2 g}{a} \sin ^{2}\left(\frac{\theta}{2}\right)\right)$
(D) $\frac{m a}{2}\left(\dot{\theta}^{2}-\frac{2 g}{a} \cos \theta\right)$
50. The extremal of the functional $\int_{0}^{1}\left(y+x^{2}+\frac{y^{\prime 2}}{4}\right) d x, y(0)=0, y(1)=0$ is
(A) $\quad 4\left(x^{2}-x\right)$
(B) $3\left(x^{2}-x\right)$
(C) $2\left(x^{2}-x\right)$
(D) $x^{2}-x$

Common Data Questions

Common Data Questions 51 and 52:

Let $T: R^{3}$ be the linear transformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+3 x_{2}+2 x_{3}, 3 x_{1}+4 x_{2}+x_{3}, 2 x_{1}+x_{2}+x_{3}\right) .
$$

51. The dimension of the range space of T^{2} is
(A) 0
(B) 1
(C) 2
(D) 3
52. \# The dimension of the null space of T^{3} is
(A) 0
(B) 1
(C) 2
(D) 3

Common Data for Questions 53 and 54:

Let $y_{1}(x)=1+x$ and $y_{2}(x)=e^{x}$ be two solutions of $y^{\prime \prime}(x)+P(x) y^{\prime}(x)+Q(x) y(x)=0$.
53. $\mathrm{P}(\mathrm{x})=$
(A) $1+x$
(B) $\quad-1-x \quad 1$
(C) $\frac{1+x}{x}$
(D) $\frac{-1-x}{x}$
54. The set of initial conditions for which the above differential equation has NO solution is
(A) $y(0)=2, y^{\prime}(0)=1$
(B) $y(1)=0, y^{\prime}(1)=1$
(C) $y(1)=1, y^{\prime}(1)=0$
(D) $y(2)=1, y^{\prime}(2)=2$

Common Data for Questions 55 and 56:

Let X and Y be random variables having the joint probability density function $f(x, y)=\left\{\frac{1}{\sqrt{2 \pi y}} e^{\frac{-1}{2 y}(x-y)^{2}}\right.$, if $-\infty<x<\infty, 0<y<1$ otherwise
55. The variance of the random variable X is
(A) $\frac{1}{12}$
(B) $\frac{1}{4}$
(C) $\frac{7}{12}$
(D) $\frac{5}{12}$
56. The covariance between the random variables X and Y is
(A) $\frac{1}{3}$
(B) $\frac{1}{4}$
(C) $\frac{1}{6}$
(D) $\frac{1}{12}$

Linked Answer Questions 57 and 58:
Consider the function $f(z)=\frac{e^{i z}}{z\left(z^{2}+1\right)}$.
57. The residue of f at the isolated singular point in the upper half plane $\{z=x+i y \in C: y>0\}$ is
(A) $\frac{-1}{2 e}$
(B) $\frac{-1}{\mathrm{e}}$
(C) $\frac{e}{2}$
(D) 1
58. The Cauchy principal value of the integral $\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^{2}+1\right)}$ is
(A) $\quad-2 \pi\left(1+2 \mathrm{e}^{-1}\right)$
(B) $\pi\left(1+\mathrm{e}^{-1}\right)$
(C) $\quad 2 \pi(1+e)$
(D) $\quad-\pi\left(1+e^{-1}\right)$

Statement for Linked Answer Question 59 and 60:

Let $f(x, y)=k x y-x^{3} y-x y^{3}$ for $(x, y) \in R^{2}$, Where k is a real constant. The directional derivative of f at the point $(1,2)$ in the direction of the unit vector $u=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is $\frac{15}{\sqrt{2}}$.
59. The value of k is
(A) 2
(B) 4
(C) 1
(D) -2
60. The value of f at a local minimum in the rectangular region $R=\left\{(x, y) \in R^{2}:|x|<\frac{3}{2},|y|<\frac{3}{2}\right\}$ is
(A) -2
(B) -3
(C) $\frac{-7}{8}$
(D) 0

End of question paper

