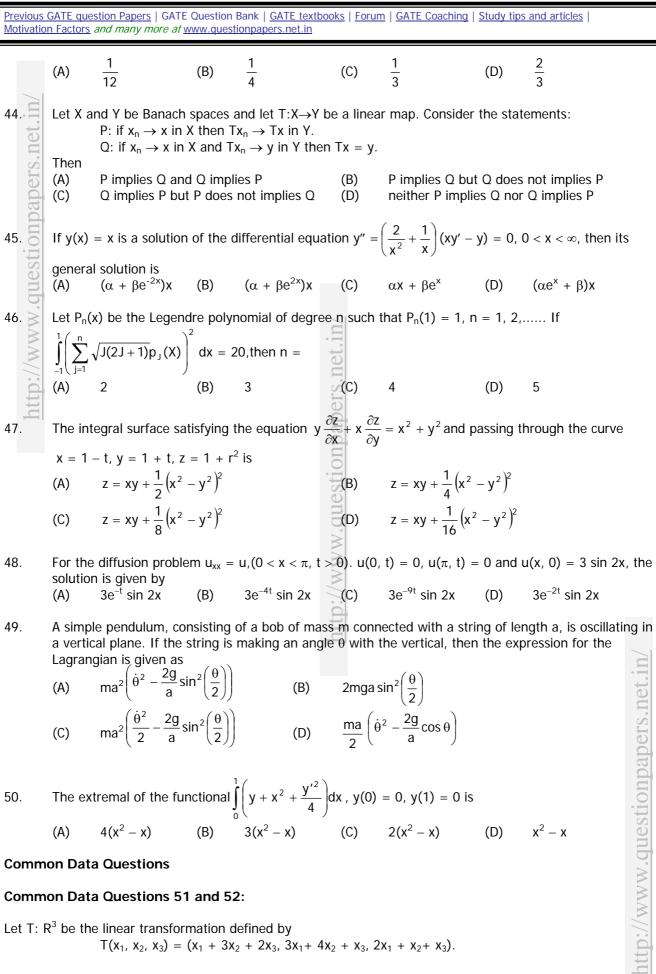
	GATE qu	estion paper - Mathematics 2009 (MA)							
X VY	:	Notations and Symbols used $\{x \in X : x \notin Y\}$							
ы о а о z questionpapers.ne	:	The set of all integers							
o	:	The set of all numbers							
R	:	The set of all real numbers							
c stio	:	The set of complex numbers							
R ⁿ and	:	$\{ \ (x_1, \dots, x_n) : x_i \in R \ \text{for} \ 1 \leq i \leq n \}$							
ℓ^1	:	The vector space of all sequences $\{x_n\}$ in C such that $\sum x_n < \infty$							
C∞ //	:	The vector space of all sequences $\{x_n\}$ in C such that $x_n \neq 0$ for at most finitely many values of n							
	:	The p-norm for $1 \le p < \infty$							
AT	:	The transpose of the matrix A							
U (a, b) :	Uniform distribution on the interval (a, b)							
f [x ₀	x _k] :	k th divided difference of f at x_0, \dots, x_k							
$\binom{n}{r}$:	$\frac{n!}{r!(\overline{n}-r)!}$							
E(X)	:	Expectation of the random variable X							
Q. 1 -0	2. 20 carry one mark	each.							
1.	The dimension of the	vector space V = { A = $(a_{ij})_{nxn}$: $a_{ij} \in C$, $a_{ij} = -a_{ij}$ } over the field R is							
	(A) n ²	(B) $n^2 - 1$ (C) $n^2 - n$ (D) $\frac{n^2}{2}$							
2.	The minimal polynomial associated with the matrix $\begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$ is								
	(A) $x^3 - x^2 - 2x - (C)$ (C) $x^3 - x^2 - 3x - (C)$								
3.	For the function $f(Z) = \sin\left(\frac{1}{\cos(1/z)}\right)$, the point $z = 0$ is								
	(A) a removable(C) an essential s	singularity (B) a pole ingularity (D) a non-isolated singularity							
4.	Let $f(z) = \sum_{n=0}^{15} z^n$ for z	\in C. If C : $ z - i = 2$ then $\oint_C \frac{f(z)dz}{(z - i)^{15}} =$							
	(A) 2πi(1 + 15i)	(B) $2\pi i(1 - 15i)$ (C) $4\pi i(1 + 15i)$ (D) $2\pi i$							


For what values of α and β , the quadrature formula $\int f(x)dx \approx \alpha f(-1) + f(\beta)$ is exact for all 5. polynomials of degree \leq 1? (A) $\alpha = 1, \beta = 1$ (B) $\alpha = -1, \beta = 1$ (C) $\alpha = 1, \beta = -1$ (D) $\alpha = -1, \beta = -1$ //www.questionpapers.net. Let $f: [0, 4] \rightarrow R$ be a three times continuously differentiable function. Then the value of 6. f [1, 2, 3, 4] is (B) $\frac{f''(\xi)}{6}$ for some $\xi \in (0,4)$ (D) $\frac{f''(\xi)}{6}$ for some $\xi \in (0,4)$ $\frac{f''(\xi)}{3} \text{ for some } \xi \in (0,4)$ (A) $\frac{f''(\xi)}{3} \text{ for some } \xi \in (0,4)$ (C) 7. Which one of the following is TRUE? Every linear programming problem has a feasible solution. (A) (B) If a linear programming problem has an optimal solution then it is unique. The union of two convex sets is necessarily convex. (C) Extreme points of the disk $x^2 + y^2 \le 1$ are the points on the circle $x^2 + y^2 = 1$. (D) The dual of the linear programming problem : \bigcirc 8. Minimize $c^T x$ subject to $Ax \ge b$ and $x \ge 0$ is Maximize b^T w subject to $A^T w \ge c$ and $w \ge 0$ (A) Maximize b^T w subject to $A^T w \le c$ and $w \ge 0$ (B) Maximize b^T w subject to $A^T w \ge c$ and w is unrestricted (C) Maximize b^T w subject to $A^T w \ge c$ and w is unrestricted (D) The resolvent kernel for the integral equation $u(x) = F(x) + \int_{\log 2}^{n} e^{(t-x)}u(t)dt$ is (A) $\cos(x - 1)$ (B) 1 (C) e^{t-x} (D) 9. e^{2(t-x)} (D) Consider the metrics $d_2(f, g) = \left(\int_a^b |f(t) - g(t)|^2 dt\right)^{1/2}$ and $d_{\infty}(f, g) = \sup |f(t) - g(t)|$ on the space 10. X = C[a, b] of all real valued continuous functions on [a, b]. Then which of the following is TRUE? Both (X, d_2) and (X, d_{α}) are complete. (A) (B) (X, d_2) is complete but (X, d_∞) is NOT complete. nttp://www.questionpapers.net (C) (X, d_{∞}) is complete but (X, d_2) is NOT complete. (D) Both (X, d_2) and (X, d_{∞}) are NOT complete. A function f. $R \rightarrow R$ need NOT be Lebesgue measurable if 11. (A) f is monotone (B) $\{x \in \mathbb{R}: f(x) \ge \alpha\}$ is measurable for each $\alpha \in \mathbb{Q}$ (C) $\{x \in \mathbb{R}: f(x) \ge \alpha\}$ is measurable for each $\alpha \in \mathbb{Q}$ For each open set G in R, $f^{-1}(G)$ is measurable (D) 12. $e_n \int_{n=1}^{\infty} be$ an orthonormal sequence in a Hilbert space H and let x ($\neq 0$) \in H. Then $\lim \langle x, e_n \rangle$ does not exist (B) $\lim \langle x, e_n \rangle =$ (A) (C) $\lim \langle x, e_n \rangle = 1$ (D) $\lim \langle x, e_n \rangle = 0$ The subspace $Q \times [0, 1]$ of R^2 (with the usual topology) is 13. dense in R² (C) (A) (B) connected separable (D) compact

 $Z_2 [x]/(x^3 + x^2 + 1)$ is 14. (A) a field having 8 elements (B) a field having 9 elements 15. The number (A) 15 16. Let F, G and H be pairwise indep. $(F \cap G \cap H) = \frac{1}{4}$. Then the probability that at rec. (A) $\frac{11}{12}$ (B) $\frac{7}{12}$ (C) $\frac{5}{12}$ 17. Let X be a random variable such that $E(X^2) = E(X) = 1$. Then $E(X^{100}) = (A)$ 0 (B) 1 (C) 2^{100} (C) Beta For which of the following distributions, the weak law of large numbers: Normal (B) Gamma (C) Beta $\gamma f = \frac{1}{(D-1)} (x^{-1})$ is (C) $\frac{\log x}{x^2}$ Ω is exact (C) an infinite field (D) NOT a field (D) 36 Let F, G and H be pairwise independent events such that $P(F) = P(G) = P(H) = \frac{1}{3}$ and $(F \cap G \cap H) = \frac{1}{4}$. Then the probability that at least one event among F, G and H occurs is (D) $2^{100} + 1$ (D) For which of the following distributions, the weak law of large numbers does NOT hold? (A) Normal (B) Gamma (C) Beta (D) Cauch Cauchy 19. If $D = \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$ is (A) log x (B) $\frac{\log x}{x}$ (C) $\frac{\log x}{x^2}$ (D) $\frac{\log x}{x^3}$ 20. The equation $(\alpha xy^3 + y \cos x) dx + (x^2y^2 + \beta \sin x) dy = 0$ is exact for (A) $\alpha = \frac{3}{2}, \beta = 1$ (B) $\alpha = 1, \beta = \frac{3}{2}$ (C) $\alpha = \frac{2}{3}, \beta = 1$ (D) $\alpha = 1, \beta = \frac{2}{3}$ Q. 21 to Q. 60 carry two marks each. If $\begin{vmatrix} 1 & 0 & 0 \\ i & \frac{-1 + i\sqrt{3}}{2} & 0 \\ 0 & 1 + 2i & \frac{-1 - i\sqrt{3}}{2} \end{vmatrix}$ 21. then the trace of A^{102} is (B) (C) (A) 1 2 (D) ://www.questionpapers.net Which of the following matrices is NOT diagonalizable? 22. $\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ $(C) \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (B) (A) Let V be the column space of the matrix $A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$. Then the orthogonal projection of $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ on 23. (A) $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ (B) $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ (C) $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ (D) (1) Let $\sum_{n=-\infty}^{\infty} a_n (z+1)^n$ be the Laurent series expansion of $f(z) = sin\left(\frac{z}{z+1}\right)$. Then $a_{2} = c_{2}$ 24. (D) $\frac{-1}{2}\sin(1)$ (C) cos(1) (A) (B) 0 1

25. Let u(x, y) be the real part of an entire function f(z) = u(x, y) + iv(x, y) for $z = x + iy \in C$. If C is the positively oriented boundary of a rectangular region R in R², then $\oint_{\Delta y} \left| \frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial x} dy \right| =$ (A) (B) (D) 1 0 (C) 2π onpapers.n 26. Let ϕ : [0, 1] \rightarrow R be three times continuously differentiable. Suppose that the iterates defined by $x_{n+1} = \phi(x_n)$, $n \ge 0$ converge to the fixed point ξ of ϕ . If the order of convergence is three then $\phi'(\xi) = 0, \ \phi''(\xi) = 0$ (B) $\phi'(\xi) \neq 0, \ \phi''(\xi) = 0$ (A) $\phi'(\xi) = 0, \ \phi''(\xi) \neq 0$ (D) $\phi'(\xi) \neq 0, \ \phi''(\xi) \neq 0$ (C) D://www.questi Let f: [0, 2] \rightarrow R be a twice continuously differentiable function. If $\int f(x)dx \approx 2f(1)$, the error in the 27. approximation is $\frac{f'(\xi)}{12} \text{ for some } \xi \in (0, 2)$ $\frac{f'(\xi)}{2} \text{ for some } \xi \in (0, 2)$ (A) (B) $\frac{f'(\xi)}{3} \text{ for some } \xi \in (0, 2)$ $\frac{f'(\xi)}{6} \text{ for some } \xi \in (0, 2)$ (C) (D) 28 For a fixed $t \in R$, consider the linear programming problem: Maximize z = 3x + 4ySubject to $x + y \le 100$ $x + 3y \leq t$ and $x \ge 0$, $y \ge 0$, The maximum value of z is 400 for t =(A) 50 100 (C) 200 (D) 300 (B) The maximum value of $z = 2x_1 - x_2 + x_3 - 5x_4 + 22x_5$ subject to 29. $x_1 + x_4 + x_5 = 6$ $x_2 + x_4 - 4x_5 = 3$ $x_3 + 3x_4 + 2x_5 = 10$ $x_j \ge 0, j = 1, 2, \dots, 5$ is (A) 28 (B) 19 (C) 10 (D) 9 30. Using the Hungarian method, the optimal value of the assignment problem whose cost matrix is given by 23 8 5 14 ://www.questionpapers.net. 10 25 23 1 35 16 15 12 16 23 11 7 is (A) (C) 29 (B) 52 26 (D) 44 Which of the following sequence $\{f_n\}_{n=1}^{\infty}$ of functions does NOT converge uniformly on [0, 1]? 31. $f_n(x) = \frac{e^{-x}}{n}$ (B) $f_n(x) = (1 - x)^n$ (C) $f_n(x) = \frac{x^2 + nx}{n}$ $f_n(x) = \frac{\sin(nx+n)}{n}$ (D) (A) Let E = {(x, y) $\in \mathbb{R}^2$: 0 < x < y}. Then $\iint_r ye^{-(x+y)} dxdy =$ 32. $\frac{1}{4}$ $\frac{3}{2}$ 3 (A) (B) (C) (D)

Page 4 of 7

33. Let $f_n(x) = \frac{1}{n} \sum_{k=0}^n \sqrt{k(n-k)} {n \choose k} x^4 (1-x)^{n-k}$ for $x \in [0, 1]$, $n = 1, 2$ if $\lim_{n \to \infty} f_n(x) = f(x)$ for $x \in [0, 1]$,										
n/										
34. oupapers.net.in	(A) 1	(B)	$\frac{1}{2}$	(C)	<u>1</u> 3	(D)	$\frac{1}{4}$			
34. SIO	Let f: $(c_{00}, \ \cdot\ _1) \to C$ be a non-zero continuous linear functional. The number of Hahn-Banach extensions of f to $(\ell^1, \ \cdot\ _1)$ is									
npat	(A) one	(B)	two	(C)	three	(D)	infinite			
35. jon 2010	If I: $(\ell^1, \ \cdot\ _2) \rightarrow ($ (A) both I and (C) I ⁻¹ is contin	I ⁻¹ are cor	the identity map ntinuous I is NOT continuo	(B)	I is continue neither I no		is NOT continuo ntinuous	us		
36.	5. Consider the topology $\tau = \{G \subseteq R: R \setminus G \text{ is compact in } (R, \tau_u)\} \cup \{\phi, R\}$ on R, where τ_u is the usual									
	topology on R and ϕ is the empty set. Then (R, τ) is									
1.m//	(A) a connecte(C) Hausdorff			(B) (D)	connected I neither con					
37.	Let			2						
Itt		R: G is finit	e or R\ G is finit	e						
	and			ap						
		R: G is cou	ntable or R\ G is	countab	ole}					
	Then		analami an D	OI						
			opology on R but τ ₁ is NOT a t		on P					
	· · ·		but τ_2 is NOT a t							
			ology on R	Grand						
				Ň						
38.	Which one of the f									
	(A) $\langle 1 + i \rangle$	(B)	$\langle 1 - i \rangle$	(C)	$\langle 2 + i \rangle$	(D)	$\langle 3 + i \rangle$			
39.	If Z(G) denotes the (A) 4	e centre of (B)	a group G, then 6	the orde (C)	r of the quotie 15	ent group ((D)	G/Z(G) cannot be 25			
40.	Let Aut(G) denote	the aroup (of automorphism	is of a gr	oup G. Which	one of the	following is NOT	a		
	cycling group?	5 - 1	· · · · · · ·	J			5			
	(A) Aut (Z ₄)	(B)	Aut (Z ₆)	(C)	Aut (Z ₈)	(D)	Aut (Z ₁₀)	let.		
41.	Let X be a non-neg	ative integ	er valued randor	m variabl	le with $E(X^2) =$	= 3 and E()	() = 1. Then	1.0		
	$\sum_{i=1}^{\infty} i P(X \ge i) =$					·		http://www.questionpapers.net.in		
	(A) 1	(B)	2	(C)	3	(D)	4	<u>np</u> (
42.	Let X be a random	variable w	vith probability d	ensitv fu	nction $f \in {f_{a}}$	f_1 , where		10		
12.	Let X be a random variable with probability density function $f \in \{f_0, f_1\}$, where $f_0(x) = \begin{cases} 2x, if 0 < x < 1\\ 0, otherwise \end{cases}$ and $f_1(x) = \begin{cases} 3x^2, if 0 < x < 1\\ 0, otherwise \end{cases}$									
	For testing the null	hypothesis	$H_0: f \equiv f_0 \text{ agains}$	t the alte	ernative hypot	hesis H ₁ :f :	at level of	Б		
	significance $\alpha = 0$.	-						\sim		
	(A) 0.729	(B)	0.271	(C)	0.615	(D)	0.385			
43.	Let X and Y be inde	onendent a	nd identically dia	stributod	u(0, 1) rando	m variablo				
чэ.	/		na lacitucally us	JUDUICU			J.	// •		
	Then P $\left(Y, , < \left(x - \frac{1}{2} \right) \right)$	-) =						tp		
	($($ 2	<u>·</u>))						ht		

Common Data Questions 51 and 52:

Motivati	s GATE question on Factors and r	Papers GATI many more at	E Question www.ques	Bank <u>GATE_text</u> stionpapers.net.in	<u>books</u> <u>Foru</u>	m <u>GATE Coach</u>	ng <u>Study ti</u> r	os and articles	
51.	The dimens (A) 0	sion of the r	range sp (B)	ace of T ² is 1	(C)	2	(D)	3	
22. 101	The dimens (A) 0	sion of the I	null spac (B)	e of T ³ is 1	(C)	2	(D)	3	
	non Data fo x) = 1 + x = 1			nd 54: o solutions of y		$(x) \cdot y'(x) + \Omega(x)$	(x) = 0		
53.	P(x) =								
onpa	(A) 1 +	- X	(B)	−1 −x 1	(C)	$\frac{1+x}{x}$	(D)	$\frac{-1-x}{x}$	
54. salue	The set of (A) y(C (C) y(1	() = 2, y'(0)	= 1	which the abo	(B)	-	(1) = 1	lution is	
	non Data fo				<u> </u>				
\geq	(g the joint pro					
//:0	$f(x, y) = {-}$	$\frac{1}{\sqrt{2\pi y}}e^{\frac{2y}{2y}}$, if –∝	$\infty < x < \infty, 0 < \infty$	y <1 othe	rwise			
55. C	The variand	•			lerg				
	(A) $\frac{1}{12}$				(C)	$\frac{7}{12}$	(D)	$\frac{5}{12}$	
	12			4	und und	12	(0)	12	
56.	The covariance between the random variables X and Y is								
	(A) $\frac{1}{3}$		(B)	$\frac{1}{4}$	(C)	$\frac{1}{4}$	(D)	$\frac{1}{12}$	
	ہ Linked Ans	wer Questic	ons 57 ai	•	<u>.</u>	0		12	
	Consider th	e function f	$f(z) = -\frac{1}{z}$	$\frac{e^{iz}}{(z^2+1)}.$	NMA				
57.	The residue	e of f at the	isolated	I singular point	in the up		${z = x + i}$	$y \in C : y > 0\}$ i	S
	(A) $\frac{-1}{2e}$		(B)	<u>–1</u> e	(C)	<u>e</u> 2	(D)	1	
58.	The Cauchy	y principal v	alue of	the integral $\int_{-\infty}^{\infty}$	$\frac{\sin x dx}{x(x^2 + 1)}$	S			st.in/
	(A) –22	τ(1 + 2e ⁻¹)	(B)	$\pi(1 + e^{-1})^{-\infty}$	(C)	$2\pi(1 + e)$	(D)	$-\pi(1 + e^{-1})$, ne
State Let f(x	ment for Lir , y) = kxy – :	n ked Answ x ³ y – xy ³ fo	er Que r (x, y)	stion 59 and $\in \mathbb{R}^2$, Where k	60: (is a real (constant. The	directional	$-\pi(1 + e^{-1})$ derivative of f	at the
point ((1, 2) in the c	lirection of	the unit	vector $\mathbf{u} = \begin{pmatrix} - \\ - \\ \sqrt{2} \end{pmatrix}$	$\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is	$\frac{15}{\sqrt{2}}$.			0000
59.	The value of (A) 2	of k is	(B)	4	(C)	1	(D)	-2	mesti
60.	The value of k is (A) 2 (B) 4 (C) 1 (D) -2 The value of f at a local minimum in the rectangular region R = $\left\{ (x, y) \in \mathbb{R}^2 : x < \frac{3}{2}, y < \frac{3}{2} \right\}$ is (A) -2 (B) -3 (C) $\frac{-7}{2}$ (D) 0								
	(A) –2		(B)	-3	(C)	$\frac{-7}{9}$	(D)	0	1M/
				End of qu		0			