THEORY OF COMPUTATION

Q1. Choose the correct statement.

The set of all strings over an alphabet $S=\{0,1\}$ with the concatenation operator for strings
a) does not form a group
b) forms a noncommutative group
c) does not have a right identity
d) forms a group if the empty string is removed from S^{*}

```
Q2. Consider the set of all strings \(S\) * over an alphabet \(S=\{a, b\}\) with the concatenation operator for strings, and
a) the set does forms semigroup
b) the set does not form a group
c) the set has a left and right identity
d) the set forms a monoid
```

Q3. Consider the set of all strings S * over the alphabet $S=\{a, b, c, d, e\}$ with the concatenation operator for strings.
a. the set has a right identity and forms a semigroup
b. the set has a left identity and forms a monoid
c. the set does not form a commutative group but has an identity
d. the set does not form a semigroup with identity

Q4. Nobody knows yet if $P=$ NP. Consider the language L defined as follows:
$\underline{\mathrm{L}=(0+1) *}$ if $\mathrm{P}=\mathrm{NP}$

And

$\underline{L}=\mathrm{j}$ otherwise

Which of the following statements is true?

a) L is recursive
b) L is recursively enumerable but not recursive
c) L is not recursively enumerable
d) Whether L is recursive or not will be known after we find out if $P=N P$

Q5. Consider the language defined as follows

$\underline{L}=\left\{a^{\wedge} n^{\wedge} b^{\wedge} \mid n>=1\right\}$ if $P=N P$

And
$\underline{L}=\{\mathbf{w w} \mid \mathbf{w}$ in $(\mathrm{a}+\mathrm{b})+\}$ otherwise

Which of the following statements is true?
a) L is recursive but not context sensitive
b) L is context sensitive but not context free
c) L is context sensitive
d) What L is will be known after we resolve the $\mathrm{P}=\mathrm{NP}$ question

Q6. Consider the language defined as follows
$\underline{L=(0+1) *}$ if the CSLs are closed under complement

And

$L=(0 * 1) * 0 *$ if $P=N P$

And

$L=\left(10^{*}\right) 1^{*}$ if P is not the same as NP

Which of the following statements is true?
a) L is always a regular set
b) L does not exist
c) L is recursive but not a regular set
d) What L is will be known after the two open problems $\mathrm{P}=\mathrm{NP}$ and the closure of CSLs under complement are resolved

Q7. Consider the language defined as follows

$\underline{L=(0+1) * \text { if man goes to Mars by 2020AD }}$
And
$\mathrm{L}=0$ * if man never goes to the Mars

Which of the following is true?
a. L is context free language but not recursive
b. L is recursive
c. Whether L is recursive or not will be known in 2020AD
d. L is a r.e. set that is not regular

Q8. Given an arbitrary context free grammar G, we define L as below.
$\underline{L}=(0+1) *$ if G is ambiguous
And
$\mathrm{L}=\mathrm{i}$ if G is not ambiguousa. L is a context-free languageb. L is recursive but not r.e.c. What L is depends on whether we can determine if G is ambiguous or notd. What L is is undecidable
Q9. Given an arbitrary turing machine M and a string w we define L as below.
$\underline{L=(0 * 1) * 0 * ~ i f ~ M ~ h a l t s ~ o n ~ w ~}$
And
$\underline{L=(0 * 1 *) *}$ if M does not halt on w
a. The type of L is undecidable because of the halting problemb. L is a context-sensitive languagec. L is recursively enumerable and not context-freed. L is context sensitive and not regular
Q10. Consider the language L defined below
$\underline{L}=(0+1) *$ if $\mathrm{P}=\mathrm{NP}$
And
$\underline{\mathrm{L}=\left(\mathbf{a}^{\wedge} \mathbf{n b}^{\wedge} \mathbf{n} \mid \mathrm{n}>=1\right\} \text { otherwise }}$
a. Whether L is a regular set that is not context-free will be known after we resolve the $\mathrm{P}=\mathrm{NP}$ question.
b. Whether L is context-free but not regular will be known after we resolve the $\mathrm{P}=\mathrm{NP}$ question
c. L is context-sensitive
d. L is not recursive

Q11. It is undecidable if two cfls L1 and L2 are equivalent. Consider two cfls L1 and L2 and a language defined as follows
$\underline{L=\left\{a^{\wedge} n b^{\wedge} n^{\wedge} n \mid n>=234\right\} \text { if } \mathbf{L} 1=\mathbf{L 2}}$

And
$\underline{L=\left\{a^{\wedge} n b^{\wedge} n^{\wedge} n d^{\wedge} n \mid n>=678\right\}}$ otherwise
a. L is recursive
b. L is context-free
c. We can never say anything about L as it is undecidable
d. L is regular

Q12. At present it is not known if NP is closed under complementation.

Consider L defined as below
$\underline{L=\left\{w w R w \mid w ~ i n ~(0+1+2)^{*} \text { and } w R \text { is the reverse of } w\right\} \text { if NP is closed under complement }}$

And
$\underline{L}=\left\{a^{\wedge} n^{\prime} b^{\wedge} n c^{\wedge} n^{\wedge}{ }^{\wedge} n^{\wedge}{ }^{n} \mid n>=34567\right\}$ otherwise
a) L is recursive
b) L is context-free and not context-sensitive
c) L is recursively enumerable but not recursive
d) We will be able to say something about L only after we resolve the NP complementation issue

Q14. Nobody knows if $\mathrm{P}=\mathrm{NP}$ at present. Consider a language L as defined below
$\underline{L=(0+1)^{*} \text { if satisfiability is in } P}$
$\mathrm{L}=(0 * 1) 0^{*}$ if satisfiability is not in P
$\mathrm{L}=(1 * 0) 1 *$ if 3-sat is in P
$\mathrm{L}=(0 * 1 *)^{*}$ if 3-sat is not in P
$\underline{L=(0 * 1 * 0 * 1 *) *}$ if $0 / 1$ knapsack problem is in P
$\underline{L=(1 * 0 * 1 * 0 *) *}$ if $0 / 1$ knapsack problem is not in P
$\underline{\mathrm{L}=(0 *(00) *(1 * 11 *) *) * \text { if max-clique problem is in } \mathrm{P}}$
$\underline{L=(0 *(00) *(1 * 11 *) *) * \text { if node-cover problem is not in } P}$
$\mathrm{L}=(0 * 1 *)^{* * * *}(010)^{*}$ if edge-cover problem is not in P
$\underline{L=\left(0^{*}+1^{*}+(00)^{*}+(11)^{*}\right) *(0100101010)^{*} \text { if the chromatic problem is not in } \mathbf{P}}$
What can we say about the string $0000111100001111=\mathbf{x}$
a) x is always in L
b) whether x is in L or not will be known after we resolve $\mathrm{P}=\mathrm{NP}$
c) the definition of L is contradictory
d) x can never be in L

Q15. An arbitrary turing machine M will be given to you and we define a language L as follows
$\underline{L=(0+00) *}$ if \mathbf{M} accepts at least one string
$\underline{L}=(0+00+000)^{*}$ if M accepts at least two strings
$\mathrm{L}=(0+00+000+0000) *$ if M accepts at least three strings
$\mathrm{L}=\left(0+\mathbf{0 0}+\mathbf{0 0 0}+---+\mathbf{0}^{\wedge} \mathrm{n}\right)$ *if M accepts at least $\mathrm{n}-1$ strings

Choose the correct statement.

a) We cannot say anything about L as the question of whether a turing machine accepts a string is undecidable
b) L is context-sensitive but not regular
c) L is context-free but not regular
d) L is not a finite set

Q16. We are given two context-free languages L 1 and L 2 and L defined as below
a) $\mathrm{L}=(0+1)$ * if $\mathrm{L} 1=\mathrm{L} 2$
b) $\mathrm{L}=((0+00+000) *(1+11+111) *) *$ if L 1 is contained in L 2
c) $\mathrm{L}=\left((0(10) *) *(1(01) *)^{*}\right.$ if L2 is contained in L1
d) $\mathrm{L}=(00+11+0+1) *(0+00+000) *$ if L 1 and L 2 are incomparable
a) As all the conditions relating to L 1 and L 2 are undecidable we cannot say anything about L
b) L is recursively enumerable
c) L is recursive but not context-sensitive
d) L is context-sensitive but not context-free
e) L is context-free but not regular

Q17. It is undecidable if an arbitrary cfl is inherently ambiguous. We are given a cfg G and the language L is defined as below
$\mathrm{L}=(0+1) * 01(0+1) * \mathrm{U} 1 * 0 *$ if $\mathrm{L}(\mathrm{G})$ is inherently ambiguous
$\underline{L=(0+1) * 10(0+1) * U 0 * 1 * \text { if } L(G) \text { is not inherently ambiguous }}$
Choose the incorrect statement
a) L is regular
b) L iscontext-free
c) L is context-sensitive
d) The above choices can be resolved only if we know if L(G) is inherently ambiguous or not

Q18. We are given an arbitrary turing machine M and define the language L as below
$\underline{L=\left(0^{*}+1^{*}\right)^{*} \text { if } M \text { halts on blank tape }}$
$\underline{L=(0+1 *) *}$ if M ever prints a 1
$\underline{L}=\left(0^{*}+1\right)^{*}$ if M ever enters a designated state q
$\mathrm{L}=((0+1+00+11+000+111)+) *$ if M accepts an infinite set
$\mathrm{L}=0$ * $(10 *) *$ if M accepts a finite set
$\underline{L=1 *(01 *) *}$ if M accepts exactly 45 strings

Choose the correct statement with reference to the string $\mathbf{x}=\mathbf{0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1}$
a) x is in L
b) x is not in L
c) we can never decide if x is in L as all the problems of the turing machine are undecidable
d) whether x is in L depends on the particular turing machine M

Q19. We are given a language L defined as follows
$L=(0+1)$ * if the Hamiltonian circuit problem is in P
$\underline{L}=(0 * 1 *+0) *$ if the Traveling salesman problem is not in P
$L=(0 * 1 * 1) * 0 *$ if the bin packing problem is in \mathbf{P}
a) the definition of L is contradictory
b) What L is will be known after we resolve the $\mathrm{P}=\mathrm{NP}$ question
c) L if a finite set
d) The string 01010101001010110010101 is in L

Q20. The intersection of two cfls can simulate a turing machine computation. We are given two cfls L1 and L2 and define the language L as below
a) $L=(00)^{*}$ if the intersection of $L 1$ and $L 2$ is empty
b) $\mathrm{L}=\left(\left(0(00)^{*}\right)\left(0(00)^{*}\right)\right)^{*}$ if L 1 is regular
c) $\mathrm{L}=(00+0000+000000)$ * if L 2 is not regular
d) $\mathrm{L}=(00)^{*}+(0000)^{*}$ if the complement of L1 is a cfl
a) L is a finite set
b) L is a regular set
c) L is undecidable
d) L is recursive but not context-free

